
Thousand-Way Parallel RTL Simulation

Mahyar Emami, Thomas Bourgeat, James R. Larus

VCA

Chip
Simulation
is Slow

2

Chip
Simulation is
Slow Becoming
Slower

3

A Growing Gap

Reproduced from https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/ 4

A Growing Gap

Reproduced from https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/ 5

≅x1000

Chip Simulation is Becoming Slower

Reproduced from https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/ 6

≅x1000

1 GHz chip at 1000 Hz → million times slowdown

1000 Hz

Chip Simulation is Becoming Slower

Reproduced from https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/ 7

≅x1000

sequential
≤ 1 Hz1000 Hz

1 GHz chip at 1000 Hz → million times slowdown

Chip Simulation is Becoming Slower

Reproduced from https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/ 8

≅x1000

1000 Hz

paral
lel

1 GHz chip at 1000 Hz → million times slowdown

sequential
≤ 1 Hz1000 Hz

Chip Simulation is Becoming Slower

Reproduced from https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/ 9

≅x1000

1000 Hz

paral
lel

1 GHz chip at 1000 Hz → million times slowdown

≥1000-way
parallel

We need 1000-way parallel simulators!

sequential
≤ 1 Hz1000 Hz

Parendi: Thousand-Way Parallel RTL Simulation

● Runs RTL simulation on a real thousand-core chip → Graphcore IPU

10

Parendi: Thousand-Way Parallel RTL Simulation

● Runs RTL simulation on a real thousand-core chip → Graphcore IPU

● Graphcore IPU (Intelligence Processing Unit)

○ 1472 cores per socket

○ ≃ 600 KiB of SRAM per core → 900 MiB on-chip

○ Message-passing architecture

■ Bulk-synchronous parallel (BSP) execution model

■ Low-cost synchronization/communication

○ Scale out to 4x (this work), 16x, 64x, …

● Parendi

○ Targets the IPU (based on Verilator)

○ 1000-way parallelization and optimizations

○ Up to 4x faster than Verilator on x64

11

Parendi: Thousand-Way Parallel RTL Simulation

● Runs RTL simulation on a real thousand-core chip → Graphcore IPU

● Graphcore IPU (Intelligence Processing Unit)

○ 1472 cores per socket

○ ≃ 600 KiB of SRAM per core → 900 MiB on-chip

○ Message-passing architecture

■ Bulk-synchronous parallel (BSP) execution model

■ Low-cost synchronization/communication

○ Scale out to 4x (this work), 16x, 64x, …

● Parendi

○ Targets the IPU (based on Verilator)

○ 1000-way parallelization and optimizations

○ Up to 4x faster than Verilator on x64

12

Background

13

Simulating Chips: What is RTL?

Digital hardware is described in RTL (register transfer level)

● A netlist → a cyclic graph

● “Stateless” combinational logic

● “Stateful” registers and memories
○ Retain values at clock cycle

14

register
logic

Cycle-accurate RTL Simulation*

15

Split registers

● current and next value

* Not timing accurate, but good enough for almost all functional verification tasks.

nextcurrent

Cycle-accurate RTL Simulation*

16

Split registers

● current and next value

At each cycle:

● Compute next

● Overwrite current

● Repeat

nextcurrent

* Not timing accurate, but good enough for almost all functional verification tasks.

Bulk-synchronous Parallel Simulation (BSP)

17

Computation phase

● Independently compute program

partitions

● Globally synchronize

Bulk-synchronous Parallel Simulation (BSP)

18

Computation phase

● Independently compute program

partitions

● Globally synchronize

Bulk-synchronous Parallel Simulation (BSP)

19

Computation phase

● Independently compute program

partitions

● Globally synchronize

Communication phase

● Exchange produced values

● Globally synchronize

BSP super step

Bulk-synchronous Parallel Simulation (BSP)

20

How does this scale to 1000s of cores/threads?

Computation phase

● Independently compute program

partitions

● Globally synchronize

Communication phase

● Exchange produced values

● Globally synchronize

BSP super step

Thousand-way
Parallel
Simulation

21

Scaling Simulation Performance

22

number of cores

simulation rate
Minimize

Scaling Simulation Performance

23

number of cores

simulation rate
Minimize

Why use the IPU?
What about a general purpose processor?

IPU or x64

24

computation synchronization communication

IPU 1000s of slow cores X ≃const ✔
On-chip ≃ const ✔
Off-chip varies X

x64 10s/100s of fast cores ✔ increasing with N X increases with N X

IPU or x64

25

computation synchronization communication

IPU 1000s of slow cores X ≃const ✔
On-chip ≃ const ✔
Off-chip varies X

x64 10s/100s of fast cores ✔ increasing with N X increases with N X

See paper for the quantitative treatment

Overview of Parendi

26

DAG Fibers TilesIPUs

1. Build a data dep. graph from source code (Verilog)
2. Extract fibers → smallest units of independent work
3. Partition fibers across IPUs → hypergraph partitioning
4. Partition fibers within IPUs → submodular load balancing

extract
parallelism

Optimize
off-chip comm.

Balance
work

Overview of Parendi

27

DAG Fibers TilesIPUs

1. Build a data dep. graph from source code (Verilog)
2. Extract fibers → smallest units of independent work
3. Partition fibers across IPUs → hypergraph partitioning
4. Partition fibers within IPUs → submodular load balancing

extract
parallelism

Optimize
off-chip comm.

Balance
work

Overview of Parendi

28

DAG Fibers TilesIPUs

1. Build a data dep. graph from source code (Verilog)
2. Extract fibers → smallest units of independent work
3. Partition fibers across IPUs → hypergraph partitioning
4. Partition fibers within IPUs → submodular load balancing

extract
parallelism

Optimize
off-chip comm.

Balance
work

Compiling RTL to the IPU

29

DAG Fibers TilesIPUs

1. Build a data dep. graph from source code (Verilog)
2. Extract fibers → smallest units of independent work
3. Partition fibers across IPUs → hypergraph partitioning
4. Partition fibers within IPUs → submodular load balancing

extract
parallelism

Optimize
off-chip comm.

Balance
work

Evaluation

30

Evaluation

31

● {l|s}rN → RV64 rocket1 cores on NxN

mesh2

● lr → Large rocket cores

● sr → Small rocket cores

● Light-weight Verilog harness

N

N

[1] Krste Asanović et al, “The Rocket Chip Generator.” (2016).
[2] Jerry Zhao et al, "Constellation: An Open-Source SoC-Capable NoC Generator," 2022 15th IEEE/ACM International Workshop on Network

on Chip Architectures (NoCArc 2022).

Hardware Setup

32

Verilator (v5.006) Parendi

Hardware AMD EPYC 9954 (ae4) Intel Xeon 6348 (ix3) 4xIPU M2000 (ipu)

cores avail. 64x2 28x2 1472x4

cores used 1, 2, 4, 6,…, 32 1, 2, 4, 6,…, 32 1472, 2944, 4416, 5888

Freq. GHz 3.75 3.5 1.35

SRAM (MiB) 386x2 79x2 900x4

Released Q4 2022 Q2 2021 Q3 2020

Verilator parallelism limited to 32 cores due to excessive compile time (+8hr); see paper.

Simulation Rates

33

Best sim. rate
(log2)

Simulation Rates

34

increasing design size
small rocket cores

Best sim. rate
(log2)

increasing design size
large rocket cores

Simulation Rates

35

Simulation Rates

36

Conclusion

● Thousand-way parallel RTL simulation is becoming a necessity

● Parendi shows thousand-way parallelism is feasible

● Runs on real hardware → Graphcore IPU

● 5888 cores across 4 sockets on a server board

● Multi-stage parallelization algorithm

● Up to 4x faster than Verilator on high-end x64

○ See paper for more evaluation, including cost, other academic work, microbenchmarks and etc.

37

Backup

38

Cost Analysis

● Regression testing scenario

● N identical tests

○ short → 1 million cycles

● Ad-hoc:
○ IPU: One test per IPU (1472 tiles)

○ x64: One test per CPU core

● Fine:
○ Tests parallelized to multiple

optimal (perf.) tiles and cores

39

Weak Scaling

40

● Increase total work and parallelism proportionally

○ Computation time remains constant w.r.t to N

● Simplification → no communication cost

● Weak scaling goal → constant sim. rate w.r.t to N

Sync. Cost Analysis

41

replica per tile

Sync. Cost Analysis

42

replica per tile

Sync. Cost Analysis

43

replica per tile

Sync. Cost Analysis

44

replica per tile

The IPU has far more scalability potentials: sync. cost is not an issue!

