
Parendi: Thousand-Way Parallel RTL Simulation
Mahyar Emami

mahyar.emami@epfl.ch

EPFL
Lausanne, Switzerland

Thomas Bourgeat
thomas.bourgeat@epfl.ch

EPFL
Lausanne, Switzerland

James R. Larus
james.larus@epfl.ch

EPFL
Lausanne, Switzerland

Abstract
Hardware development critically depends on cycle-accurate
RTL simulation. However, as chip complexity increases, con-
ventional single-threaded simulation becomes impractical
due to stagnant single-core performance.

Parendi is an RTL simulator that addresses this challenge
by exploiting the abundant fine-grained parallelism inherent
in RTL simulation and efficiently mapping it onto the mas-
sively parallel Graphcore IPU (Intelligence Processing Unit)
architecture. Parendi scales up to 5888 cores on 4 Graphcore
IPU sockets. It allows us to run large RTL designs up to 4×
faster than the most powerful state-of-the-art x64 multicore
systems.

To achieve this performance, we developed new partition-
ing and compilation techniques and carefully quantified the
synchronization, communication, and computation costs of
parallel RTL simulation: The paper comprehensively ana-
lyzes these factors and details the strategies that Parendi
uses to optimize them.

CCS Concepts: • Hardware → Simulation and emula-
tion; Testing with distributed and parallel systems;
Hardware description languages and compilation; •
Computing methodologies→Massively parallel and
high-performance simulations;Distributed simulation;
Simulation evaluation; Discrete-event simulation; • Com-
puter systems organization → Multiple instruction, multi-
ple data; • Software and its engineering→ Compilers.

Keywords: Bulk-synchronous Parallel, RTL Simulation, Cycle-
accurate, Partitioning, Submodular Load Balancing

ACM Reference Format:
Mahyar Emami, Thomas Bourgeat, and James R. Larus. 2025. Parendi:
Thousand-Way Parallel RTL Simulation. In Proceedings of the 30th
ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems, Volume 2 (ASPLOS ’25),
March 30-April 3, 2025, Rotterdam, Netherlands. ACM, New York,
NY, USA, 15 pages. https://doi.org/10.1145/3676641.3716010

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
ASPLOS ’25, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1079-7/25/03
https://doi.org/10.1145/3676641.3716010

1 Introduction
Hardware developers spend as much as a quarter of their
time running simulations [22, 23]. Cycle-accurate RTL (Reg-
ister Transfer Level) simulation is an essential tool for de-
bugging and validating an ASIC or FPGA design, but it can
be time-consuming to run.

Unfortunately, its slow speed hampers the design process.
Fig. 1 shows the increasing gap between single-thread per-
formance and package transistor count. It shows that the
single-thread simulation of the new generations of chips on
existing computers is becoming less feasible.

2004 2010 2016 2022 2028 2034
101
103
105
107
109 Single-thread

SpecINT×103

Transistors×103

Required cores

Figure 1. Chip growth and single-thread performance [44].
The dashed line predicts the core count, assuming linear
scaling, necessary to simulate a state-of-the-art chip at the
same rate as in 2006.

One appealing solution is to exploit the inherent paral-
lelism of RTL designs by simulating them on parallel com-
puters [21, 35, 36, 58]. However, Fig. 1 shows that simulating
today’s chips at the same rate as we simulated chips in 2006
requires parallel simulation that can utilize hundreds or thou-
sands of cores.
This paper presents a practical solution to the problem

of parallelizing RTL simulation of large (e.g., 100-core SoCs)
across a few thousand cores. To demonstrate, we build an RTL
simulator running on the Graphcore IPU [4, 29], a 1472-core
chip that is the building block of parallel machine-learning
systems. Although the IPU is not well known, its architec-
ture contains many features–high core count, fast synchro-
nization, and high internal and external bandwidth–that are
especially well-suited for large-scale RTL simulation.

A parallel RTL simulator on a massively parallel machine
must balance synchronization, communication, and compu-
tation. We analyze these factors to clarify their relations.
These axes are not independent, which makes it challenging
to partition an RTL simulation across many cores.

We use these experimental insights to build Parendi1, the
first scalable, multi-thousand-way parallel RTL simulator.
1Parendi is the female Zoroastrian angel of abundance.

783

https://doi.org/10.1145/3676641.3716010
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3676641.3716010
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3676641.3716010&domain=pdf&date_stamp=2025-03-30

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Mahyar Emami, Thomas Bourgeat, and James R. Larus

tile

memory

M2000 4xIPU
IPU

Figure 2. The IPU processor and M2000 server blade.

Parendi is open-source, facilitating further research. For
large designs, Parendi demonstrates performance and effi-
ciency gains across multiple dimensions. It runs up to 4×
faster than multithreaded Verilator (the fastest RTL simula-
tor). In nightly cloud testing scenarios, Parendi could reduce
costs by more than 2×. It also compiles large designs 12×
faster and uses 18× less memory than Verilator.
The contributions of this work are:

• A quantitative study of massively parallel RTL simulation.
• A new communication- and duplication-aware compila-
tion strategy for large-scale RTL simulation.

• Implementation of Parendi, the first open-source2 RTL
simulator that runs on thousands of cores.

• An evaluation of Parendi on a Graphcore system with
5888 cores that shows that it cost-effectively exceeds Veri-
lator’s performance on a high-end x64 system by up 4.0×.

The paper is organized as follows: §2 provides background
on the IPU. §3 details the parallel RTL simulation strat-
egy. §4 presents a high-level performance study. §5 outlines
Parendi’s design. §6 evaluates Parendi on IPU and Verilator
on x64. §7 reviews related work. §8 concludes.

2 Graphcore IPU
A Graphcore IPU is a single package containing 1472 tiles
(physical cores) connected by a high-bandwidth network
(IPU exchange) with 11 TiB/s all-to-all bandwidth [4]. The
IPU is amultiple-instruction, multi-data (MIMD) architecture
in which each tile runs an independent instruction stream. By
contrast, GPUs use SIMD or SIMT execution, where groups
of threads (Warps) simultaneously execute the same instruc-
tion on different data. The IPU is a message-passing machine.
Each tile can only access its private memory and must ex-
plicitly communicate through the exchange fabric. An IPU
has a total on-chip memory of approximately 900 MiB, with
each tile having exclusive access to 624 KiB.
Fig. 2 displays a Graphcore M2000 IPU server, a 1U unit

housing 4 IPUs with a 320 GiB/s exchange fabric, totaling
5888 tiles. Systems can scale to 16 or 64 IPUs using multiple
boards. Our study utilized a single board.

2https://github.com/epfl-vlsc/parendi

An IPU system (with any number of IPUs) is programmed
in C++ using the bulk synchronous parallel (BSP) [56] pro-
grammingmodel, supported by the poplar SDK [6] and clang-
based C++ compiler popc. The IPU directly supports BSP
communication and synchronization. The following section
describes BSP and how to apply it to RTL simulation.

3 Parallel RTL Simulation
Hardware description languages (HDL) like Verilog express
digital sequential circuits. An HDL program contains stateful,
clocked elements called registers interconnected by wires
and stateless combinational logic. Register transfer level
(RTL) is a set of clocked registers and combinational logic.

This paper considers cycle-accurate RTL simulation, where
combinational logic has zero delay. Also, we only use full-
cycle (activity-oblivious) simulation, which evaluates an en-
tire circuit at each RTL cycle. The alternative is event-driven
(activity-aware) simulation. In general, full-cycle simulators
perform better—sometimes by orders of magnitude—because
tracking value changes in RTL is expensive [14].

3.1 Shared-Memory Simulation
Parallel RTL simulation poses challenges for cache-coherent,
shared-memory computers. First, fine-grained parallelism re-
quires frequent synchronization, which is costly on a shared-
memory multiprocessor [21, 58]. Second, the RTL tasks per-
form fine-grained, point-to-point communication. In an RTL
design, a task may communicate only a few bytes of data to
the known cores computing its neighbors in the RTL graph,
but all transfers go through the last-level cache (LLC). Fi-
nally, when compiled into code, RTL can have a high data
and instruction reuse distance, which makes caches perform
poorly. Most data items and instructions are accessed once
per simulated RTL cycle, which might span millions of ma-
chine cycles. When large designs do not fit the caches, these
memory references incur cache misses each RTL cycle [64].

3.2 BSP RTL Simulation
To alleviate the first two problems, we use Valiant’s bulk
synchronous parallel (BSP) [56] model. BSP is a message-
passing model alternating two phases: (i) computation and
(ii) communication. In the computation phase, parallel pro-
cesses run, reading shared values and modifying only private
data. Computation ends at a barrier. Then, the communi-
cation phase transfers newly computed private values to
consuming processes. Communication also ends at a barrier,
after which the next computation phase begins. The appeal of
BSP is that it reduces synchronization to two global barriers
per RTL clock cycle. 3

3Other parallel RTL simulation systems utilize this computation model [16–
18, 21, 40, 57, 58], but it was only recently called out as BSP [21].

784

https://github.com/epfl-vlsc/parendi

Parendi: Thousand-Way Parallel RTL Simulation ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

f3

f2
f1

p2

p1

a2a1 a4a3 a5

c1

b1 b2 b3 b4

read1 read2

Data Dependence Graph Simulation

read3

write1

write3write2

T
h
r
e
a
d
2

T
h
r
e
a
d
1

comp

BSP

RTL cycle

comm

Figure 3. BSP Simulation of an RTL data dependence graph.
The graph contains three fibers (f1, f2, f3), partitioned into
two processes (p1, p2), running on two threads. a3 is du-
plicated. The run on the right shows the computation and
communication phases, separated by barriers.

Fig. 3 contains a sample data dependence graph RTL circuit.
This graph splits each RTL register into two values: a read-
only value (current, at the leading clock edge) and a write-
only value (next, at the end). The current values at the top
(e.g., read1) are fed into stateless combinational logic (circles)
that computes the next register values (e.g., write1).
The dashed lines in Fig. 3 partition the graph into BSP

processes p1 and p2. Each process reads a set of RTL registers
and computes new values for one or more (e.g., write1 in
p2). Since we only communicate register values at the end
of the computation phase, processes may need to duplicate
intermediate computations (e.g., a3 is in both p1 and p2).

The right side of Fig. 3 shows the evaluation of the example.
The parallel processes synchronize at a barrier (dashed verti-
cal lines). The first barrier marks the end of the computation,
after which we exchange next values (write1, write2, and
write3) and update the current values accordingly (read1,
read2, and read3). We finish the communication with a
barrier and conclude one RTL simulation cycle.
A parallel RTL compiler partitions the data dependence

graph to minimize the time spent running a simulation cycle.
p1 and p2 are not the only possible partitions of Fig. 3. We
call the atoms of BSP simulation fibers. A fiber is the smallest
set of operations that uniquely produces the next value of a
single register. Fig. 3 contains three registers and three fibers
f1 to f3, partitioned into p1 = {f1} and p2 = {f2, f3}.
It is worth noting that BSP is only one of many possible

parallel simulation techniques. In BSP, nodes a1 and a2 be-
long to the same fiber, so they run one after the other. We
could consider a fine-grain parallel execution in which indi-
vidual nodes in Fig. 3 evaluate in parallel, with point-to-point
synchronization. Verilator [48–50] uses this approach [46].
The advantage of fine-grained parallelism is avoiding dupli-
cated work at the cost of more synchronization.

4 Analysis of BSP RTL Simulation
We now measure and analyze the principal performance
factors in BSP RTL simulation using small benchmarks on

the M2000 quad-IPU system and an Intel Xeon Gold 6348
56-core dual-socket processor (see Table 2 for details).
Parallel performance depends on synchronization, com-

munication, and computation costs. In BSP, the sum of the
three is the time to simulate one cycle, so the simulation rate
(in a thousand RTL cycles per second or kHz) is

𝑟𝑐𝑦𝑐𝑙𝑒 =
1

𝑡𝑠𝑦𝑛𝑐 + 𝑡𝑐𝑜𝑚𝑚 + 𝑡𝑐𝑜𝑚𝑝

, (1)

where 𝑡𝑠𝑦𝑛𝑐 , 𝑡𝑐𝑜𝑚𝑚 , and 𝑡𝑐𝑜𝑚𝑝 are per RTL cycle synchroniza-
tion, communication, and computation latencies. Reducing
this sum increases the simulation rate. Below, we explore
how each term behaves as we seek to increase parallelism.
Our analysis reveals salient architectural features of the IPU
and x64, providing insight into compilation strategies.

4.1 Synchronization
BSP requires two global synchronizations per simulated
clock cycle, so 𝑡𝑠𝑦𝑛𝑐 is the cost of two barriers. Therefore,
𝑡𝑠𝑦𝑛𝑐 is independent of the simulated design. However, since
the cost of a barrier increases with parallelism, it depends
on the number of hardware threads used for a simulation.

To explore the relationship between 𝑡𝑠𝑦𝑛𝑐 and performance,
we simulate a set of pseudo-random number generators
(PRNG), each performing three XORs and three shifts [37].
The simulated PRNGs are independent; so, 𝑡𝑐𝑜𝑚𝑚 = 0, but
𝑡𝑠𝑦𝑛𝑐 > 0 as we still need to synchronize with the RTL clock.
Therefore, if 𝑡𝑠𝑦𝑛𝑐 is small compared to the computation cost,
we expect to observe a near-constant simulation rate.

We simultaneously increase the number of PRNGs and
computation units—tiles (IPU) or threads (x64). In each set
of experiments, we keep the amount of work per tile (thread)
constant. Note that each PRNG consists of one fiber, but we
can sequentially execute multiple fibers on one tile (thread)
to vary the computation-to-synchronization cost ratio.

We use the IPU’s built-in barrier and sweep the tiles from
64 to 5888 by 64. On x64, we use a user-space (atomic fetch-
and-add) barrier, measuring from 1 to 56 threads. This type
of barrier performed better than OpenMP’s built-in, MCS, or
sense barriers.
Fig. 4 shows the measured rate on the IPU (normalized

to the rate with 64 tiles) and on x64 (normalized to the rate
with one thread). Each line shows the performance with a
fixed quantity of fibers per tile: 7, 56, and 448 on the IPU and
736, 5888, and 47104 on the x64. The total work with 5888
tiles on IPU is the same as 56 threads on x64. We normalized
each experiment to itself as we are not comparing absolute
simulation rates between the machines.
With 7 fibers per tile on the IPU, synchronization causes

performance to fall by almost 50% as the number of tiles
increases. Synchronization latency becomes less detrimental
as the computation per tile increases (with 448 fibers, perfor-
mance falls by a few percent). The cost of synchronization
on x64 is high, even with many fibers per thread. With 736

785

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Mahyar Emami, Thomas Bourgeat, and James R. Larus

64
14
72

29
44

44
16

58
88

IPU Tiles

0.00
0.25
0.50
0.75
1.00

Ra
te

7f 56f 448f

1 14 28 42 56

x86 Threads

736f 5888f 47104f

Figure 4. IPU and x64 PRNG rates

fibers per thread, performance drops by more than 75%, and
even with 47104 fibers per thread, performance falls by 25%.
The IPU has a native hardware barrier that consumes only
a few hundred IPU cycles. By contrast, x64 barrier synchro-
nization requires expensive atomic memory accesses that
could require a few thousand cycles with 56 threads.
Fig. 4 reveals a simple rule-of-thumb. Masking synchro-

nization overhead on x64 requires hundreds of thousands of
instructions per thread (each fiber is roughly 6 instructions),
whereas on the IPU, a few thousand instructions adequately
hide synchronization overhead. The IPU supports very fine-
grain parallelism, whereas the x64 does not.

4.2 Communication
Similar to 𝑡𝑠𝑦𝑛𝑐 , we expect 𝑡𝑐𝑜𝑚𝑚 to increase as we increase
parallelism, as adding tiles (threads) means more values are
communicated among tile (thread). Unlike synchronization,
communication depends on the specifics of an RTL design
and the partition of fibers among tiles (threads). We sum-
marize these considerations into two parameters: bytes sent
from each tile (𝑏) and number of tiles in the simulation (𝑚).

To first order, we might expect 𝑡𝑐𝑜𝑚𝑚 = 𝑚×𝑏
𝑏𝑤

, where 𝑏𝑤 is
the communication bandwidth and𝑚×𝑏 is the total commu-
nication volume. Additional parallelism can increase commu-
nication latency if it increases the inter-tile (thread) volume.
Therefore, at some point, the increase in 𝑡𝑐𝑜𝑚𝑚 could out-
weigh the benefits of spreading computation among more
tiles (threads). Alternatively, 𝑡𝑐𝑜𝑚𝑚 could be almost indepen-
dent of𝑚 and depends primarily on 𝑏. In this case, perfor-
mance would increase monotonically with parallelism.

We found that communication within a single IPU appears
to depend primarily on 𝑏, but communication between IPUs
depends on𝑚×𝑏. We demonstrate this with two experiments.

First, consider 2𝑚 tiles running on one IPU. We randomly
partition the 2𝑚 tiles into two sets of 𝑚 tiles and send a
fixed number of bytes in both directions between the sets.
The left plot in Fig. 5 shows the measured IPU cycle counts
(averaged over 10 random bi-partitions). The cycle counts
include 𝑡𝑠𝑦𝑛𝑐 as an exchange requires synchronization. The
horizontal axis is the number of bytes each tile sends and
receives (𝑏). The vertical axis is the number of tiles (𝑚). The
on-chip 𝑡𝑐𝑜𝑚𝑚 increases only in the direction of increasing 𝑏
as shown by the arrow in the left chart of Fig. 5.

Figure 5.Measured communication cycles on the IPU

In the second experiment, one tile in each pair resides on
one IPU and the other on another IPU, so all traffic goes
off-chip. The right chart in Fig. 5 reports the results. It shows
a vastly different behavior: 𝑡𝑐𝑜𝑚𝑚 increases with increasing
parallelism and bytes per tile as it depends on𝑚×𝑏 (the diag-
onal arrow delineates the direction of change). Furthermore,
the increase is more pronounced.

At the plots’ darkest points, we consume 13% and 82% of
the maximum measured communication on- and off-chip
bandwidth, respectively (7.7 TiB/s and 107 GiB/s). The on-
chip experiment is far from saturating the bandwidth, so
latency is insensitive to tile count. By contrast, the off-chip
experiment runs near the fabrics’s maximum bandwidth, so
additional communication increases contention and latency.
In conclusion, the difference between these communica-

tion fabrics means that minimizing off-chip communication
volume is a first-class concern when the traffic is large.

It is worth noting a limitation of Graphcore BSP commu-
nication. The IPU’s exchange fabric is statically scheduled;
hence, communicationmust start with a barrier to ensure all
tiles are at the same point in execution. Unfortunately, this
precludes optimization such as overlapping computation and
communication or dynamic load balancing.

4.3 Computation
At first glance, optimizing 𝑡𝑐𝑜𝑚𝑝 is similar to the multipro-
cessor independent task scheduling (makespan minimization)
problem [25]. In this classic problem, we consider a set of
tasks (fibers) 𝐹 = {𝑓1, ..., 𝑓𝑛} with corresponding execution
times 𝑡𝑖 , ..., 𝑡𝑛 . The goal is to schedule these tasks on𝑚 tiles
(threads) to minimize the longest execution time across all
tiles. This problem is NP-hard [55], but polynomial-time
approximations exist [25, 45].

In the classical problem, tasks (fibers) have fixed execution
times, independent of where they run. However, in RTL
simulation, two fibers might compute a shared intermediate
value (for example, value a3 in Fig. 3). Collocating these two
fibers in the same process enables optimization. However,
it complicates the partitioning problem. Each fiber consists
of a set of computation nodes (the nodes in Fig. 3). If we

786

Parendi: Thousand-Way Parallel RTL Simulation ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Tiles

 bounded by
the straggler

straggler

schedule
linear

(a) Stragglers impose a lower bound on 𝑡𝑐𝑜𝑚𝑝 . Fibers
sorted for visualization.

0 1000
1.
4K

t i

pico

0 200fi

0
60
0 bitcoin

0 10000
14
.0
K rocket

(b) Fiber computation cycles in pico, bitcon, and rocket.

20 23 26 29

20
2−2
2−4
2−6

pico

20 23 26 29
Tiles

bitcoin

20 23 26 29

rocket tcomp

tcomm

tsync

(c) Reducing 𝑡𝑐𝑜𝑚𝑝 through parallel execution (base-2 log
scale). Dashed lines show a perfect scaling.

Figure 6. Straggler fibers and performance scaling regions.

Parendi Verilator on ix3

pico bitcoin rocket pico bitcoin rocket
par. kHz par. kHz par. kHz par. kHz par. kHz par. kHz

1 168.7 1 14.5 2 17.7 1 14141.7 1 537.4 1 220.3
111 629.4 270 935.2 1211 93.3 2 490.4 2 232 2 99.2

Table 1. Simulation rate in kHz. par is the tile- or thread-
count used to achieve the rate in kHz. See Table 2 for the
technical specification of ix3.

denote the execution time of a BSP process using 𝜏 (.), then
a process made up of fibers 𝑓𝑖 and 𝑓𝑗 would have 𝜏 (𝑓𝑖 ∪ 𝑓𝑗) =
𝑡𝑖+𝑡 𝑗−𝜏 (𝑓𝑖∩𝑓𝑗) since we need to execute the shared code only
once. Moreover, merging fibers eliminates communication
(𝑡𝑐𝑜𝑚𝑚) so 𝜏 (𝑓𝑖 ∪ 𝑓𝑗) ≤ 𝑡𝑖 +𝑡 𝑗 −𝜏 (𝑓𝑖 ∩ 𝑓𝑗). This is a submodular
function, and this variant of the scheduling problem is called
submodular load balancing (SLB). SLB is inherently more
complex than classic scheduling and challenging to get even
modest approximation guarantees (

√︁
𝑛/𝑙𝑜𝑔(𝑛) [51]).

In the trivial case, when fewer tasks exist than tiles (threads)
(𝑛 ≤ 𝑚), the optimal solution is to assign a fiber to each tile
(thread). It is impossible to improve 𝑡𝑐𝑜𝑚𝑝 beyond max𝑖 𝑡𝑖 as
the slowest fiber (the straggler) bounds 𝑡𝑐𝑜𝑚𝑝 from below.
Encountering this bound on x64 hardware is unlikely: even
relatively small designs have a few hundred fibers, an order
of magnitude more than available cores. However, a single
IPU chip has 1472 tiles, sufficient for small to medium-sized
designs so that a straggler can limit IPU performance.

Fig. 6a depicts the SLB problem: mapping fibers to tiles
results in a linear region in which 𝑡𝑐𝑜𝑚𝑝 falls almost linearly
with additional tiles. The benefits become less significant,
and we eventually plateau at max𝑖 𝑡𝑖 (with sufficient tiles)
with𝑚𝑐𝑟𝑖𝑡 as the minimum tiles needed to this point. To max-
imize the simulation rate, we only need𝑚𝑐𝑟𝑖𝑡 tiles; having
more would not help as the straggler is the limit.

To put this into perspective, consider three small RTL de-
signs: (1) a multi-cycle RISC-V pico core [42], (2) a bitcoin
miner [5], and (3) a small rocket pipelined RISC-V core [11].
These small designs contain more fibers than x64 systems
cores: 111, 270, and 1211 fibers, respectively. We run each
benchmark using Parendi, described later in §5.
Fig. 6b shows fiber computation latency (𝑡𝑖 for each 𝑓𝑖)

of the three benchmarks (in IPU machine cycles). Fig. 6c
illustrates the corresponding scheduled execution times with
the dashed diagonal representing a perfect linear reduction.
We normalize machine cycle counts to the minimum parallel
execution: 1 tile in pico and bitcoin, 2 tiles in rocket (a
single tile cannot hold sufficient code and state for rocket).
First, 𝑡𝑐𝑜𝑚𝑝 in Fig. 6c follows the trend of Fig. 6a: im-

balanced fibers yield a small linear scaling region. pico is
the most imbalanced and settles to a final 𝑡𝑐𝑜𝑚𝑝 extremely
quickly. rocket is slightly more scalable but bitcoin per-
forms the best as its fibers are roughly balanced. Second, 𝑡𝑠𝑦𝑛𝑐
and 𝑡𝑐𝑜𝑚𝑚 increase with additional tiles. However, the 𝑡𝑐𝑜𝑚𝑝

reduction is always larger, so the execution cost decreases.
Table 1 compares the wall-clock simulation rate of the IPU,

using Parendi, against an Intel Xeon 6348 (see Table 2 for
details), using Verilator. We show the simulation rate using
a single tile (except for rocket, which needs more memory
than available in one tile) and the maximum number of tiles,
where we assign one fiber per tile. For x64, we report the
single-thread and best multi-thread performance.
None of the three small benchmarks show any speedup

on x64 from parallelism since the synchronization cost is
too high (see §4.1). These results do not mean that Verilator
cannot speed up RTL simulation. In §6, we show that Verila-
tor does an excellent job of parallelizing code. However, our
analysis of 𝑡𝑠𝑦𝑛𝑐 shows that a simulated design on the x64
must be large enough to mask synchronization overhead,
and these three benchmarks need to be bigger.
Verilator’s inability to scale these three benchmarks sup-

ports our claim that the straggler fiber is not a performance
limit on x64 as synchronization latency dominates. On the
other hand, stragglers are a fundamental concern for Parendi
for small designs. Table 1 shows that Parendi’s parallel
performance does not manage to even match Verilator’s
single-thread performance for pico and rocket, despite mod-
est gains from parallelism. Parendi runs bitcoin using a
single-tile at 14.5 kHz, far from Verilator’s single-thread per-
formance (537 kHz). However, with 270 tiles, Parendi runs
bitcoin at 935.2 kHz, faster than Verilator’s single- and

787

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Mahyar Emami, Thomas Bourgeat, and James R. Larus

multi-thread performance. Lastly, note that single-tile exe-
cution of pico and bitcoin on the IPU are approximately
84× and 37× slower than x64. Consequently, the IPU has
to significantly scale RTL simulation to reach Verilator’s
single-thread performance.

5 Parendi Compiler
Parendi is a Verilog compiler for the IPU systems. It is
derived from Verilator to take advantage of its optimiza-
tions and maturity. However, Parendi contains significant
changes that target the IPU (message-passing) rather than
the x64 (shared memory). Parendi also includes new sched-
uling and partitioning passes and IPU-specific optimizations.
Parendi generates a C++ BSP program that uses Graph-

core’s poplar programming framework. The code defines
each tile’s computation and how the tiles communicate.
At a high level, Parendi’s primary responsibility is to

partition RTL across the tiles of an IPU system. The user
specifies the number of tiles. Parendi tries to maximize the
simulation rate by finding an appropriate partitioning of
fibers to tiles. We briefly describe our partitioning strategy.

5.1 Partitioning
After generating a data dependence graph (see Fig. 3), we
find the fibers by collecting the nodes that transitively feed
into each sink node by crawling the graph in reverse.
Once we form the set of fibers, we must solve the SLB

problem (§4.3). It is also crucial to recognize the interde-
pendence between computation (𝑡𝑐𝑜𝑚𝑝) and communication
latency (𝑡𝑐𝑜𝑚𝑚). In addition, each tile has a finite memory.
Consequently, our partitioning algorithm must consider du-
plication, communication, and memory limitations.
We solve this problem in multiple steps, each pursuing

a different goal. At each algorithm step, we merge fibers
into processes. On the IPU, a process is a collection of fibers
that will eventually run on a tile (see Fig. 3). There are four
stages in our algorithm: (1) Reduce data memory footprint,
(2) minimize off-chip communication, (3) reduce 𝑡𝑐𝑜𝑚𝑚 while
keeping 𝑡𝑐𝑜𝑚𝑝 unchanged, (4) match the number of fibers to
the available hardware.

In the first stage, we merge fibers that reference the same
RTL array but only for very large arrays (e.g., ≥ 128 KiB,
tunable). We do this to save memory at the cost of possibly
increasing 𝑡𝑐𝑜𝑚𝑝 , so it is only worthwhile for large arrays.4

4Doing so reduces the probability of running out of tile memory later.
Consider a design with one 256 KiB array and four 64-KiB ones. Assume
each array references 3 equal-size fibers: 𝑎1, 𝑎2, 𝑎3 by the 256 KiB array,
𝑏1, 𝑏2, 𝑏3 by the first 64-KiB array, ..., and 𝑒1, 𝑒2, 𝑒3 by the fourth 64 KiB
array. The goal is to create 3 balanced processes. Because there are more
64-KiB arrays, we could end up merging fibers that reference distinct ar-
rays, e.g., {𝑎1, 𝑏1, 𝑐1, 𝑑1, 𝑒1}. Such a process needs 512 KiB of data mem-
ory, which exceeds the available on-tile data memory. However, if we pre-
merge {𝑎1, 𝑎2, 𝑎3}, in the worst case we will end up with a process such
as {𝑎1, 𝑎2, 𝑎3, 𝑏1, 𝑐1} requiring 384 KiB. No other balanced process would
exceed 256 KiB either.

The second stage minimizes off-chip exchanges if Parendi
is compiling for multiple IPUs. We do this by partitioning a
hypergraph of fibers, in which hypernodes represent fibers,
and hyperedges represent RTL registers. If two fibers access
the same register (read or write), their corresponding hyper-
nodes share a hyperedge. The hyperedge weights are the
number of words in an RTL register, and hypernodes are
unweighted. For 𝑘 IPUs, we use the KaHyPar [47] library to
find a 𝑘-way balanced partition of the hypergraph that mini-
mizes the cut (hyperedges crossing the partitions). KaHyPar
produces 𝑘 roughly equally-sized sets of fibers. However,
each set may contain more than 1472 fibers, so we must
further merge fibers to fit the available tiles.
In the third stage, we conservatively merge the smallest

fibers to reduce communication within each target IPU with-
out increasing computation latency. Intuitively, we move
right to the left in the right subplot of Fig. 6a towards𝑚𝑐𝑟𝑖𝑡 .
If we reduce the number of fibers to fit the tiles in an IPU
without crossing𝑚𝑐𝑟𝑖𝑡 , then we can use the optimal 𝑡𝑐𝑜𝑚𝑝 =

max𝑖 𝑡𝑖 and a pseudo-optimal 𝑡𝑐𝑜𝑚𝑚 . We create one process
per fiber and estimate its execution cost. Recall from §4.3 that
the cost of a process is submodular with respect to its fibers.
We use a dense bitset data structure to represent duplication
across fibers and efficiently compute intersection and union
in the submodular cost function—𝜏 (𝑓𝑖∪ 𝑓𝑗) = 𝑡𝑖+𝑡 𝑗−𝜏 (𝑓𝑖∩ 𝑓𝑗).
Moreover, we use another bitset to track the memory usage
after merging, accounting for deduplication.
In each iteration, we select the process with the shortest

execution time and try to merge it with another with which it
communicates, so long as their merged time does not surpass
the worst existing execution time. If we cannot perform
the merge because of overflowing memory or exceeding
the straggler execution time, we consider merging the two
smallest processes. If that fails, we skip the candidate process
and move to the next one. We merge processes until we
process all of them or reach the desired tile count.
The final stage only runs if the third stage fails to reach

the desired tile count. We follow the same strategy as in the
third stage but allow worst-case execution time to increase.
At the end of this stage, the number of processes must fit the
available hardware. Otherwise, the compilation fails because
the design is too large to fit the hardware resources.

5.2 IPU-Specific Optimizations
Parendi extends Verilator’s optimizations with a few IPU-
specific ones. We briefly describe the most important ones.

Differential exchange. RTL arrays are common in hard-
ware designs, e.g., a register file or a cache bank. If a process
reads an array, it needs a full copy on its tile. We avoid send-
ing whole arrays by using static analysis to determine the
number of updates to an array, though not their location or
condition (e.g., a 2-port SRAM with byte-strobes). With this
analysis, we only send the changes instead of an entire array.

788

Parendi: Thousand-Way Parallel RTL Simulation ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Aggressive block splitting. We extend Verilator’s
V3Split pass, favoring parallelism over code bloat, to maxi-
mally split all clocked code blocks.
Aggressive inline. Parendi ensures that the simulation

program on the IPU is free of function calls. Inlining can
increase code size and produce excessive instruction cache
pressure on x64, especially in RTL simulation, where nearly
every instruction executes only once per RTL cycle, except
for functions invoked multiple times. An IPU tile has no
instruction cache but a 624 KiB local memory, of which
200 KiB holds executable code. So, a single IPU chip has
≈300MiB of on-chip instructionmemory space, which allows
Parendi to aggressively inline code.

5.3 Limitations
Currently, Parendi only supports a subset of Verilator’s
clocking capabilities. Parendi can simulate an RTL design
with one top-level (at the testbench) clock and an arbitrary
number of gated or divided ones.5 Parendi supports only a
Verilog test driver, whereas Verilator allows both C++ and
Verilog drivers. We do this for pragmatic reasons: host inter-
actions are costly on the IPU, and a C++ testbench interacts
at every simulated cycle, which would be impractically slow
on the IPU.6 Parendi may fail to compile very large design
whose code and state exceed the on-chip memory capac-
ity of an IPU board (≈4×900 MiB). Verilator could perhaps
compile and run such massive designs, albeit, very slowly.
Parendi’s philosophy is to scale out and use more IPUs for
larger designs. That said, this work explored this path only
up to 4 IPUs. Scaling simulation to 16, 64, or even 256 IPUs
(225 GiB of SRAM) is left for future work. Additionally, a
single IPU tile has about 400 KiB of data memory. So, if a de-
sign contains a single Verilog array larger than this amount,
compilation fails. Such large Verilog arrays are unlikely to
appear in reasonably real silicon since large SRAMs in RTL
designs (e.g., caches) are banked into much smaller arrays
(e.g., 64-KiB banks). However, these arrays might exist in
non-synthesizable test benches. Currently, users have to
manually split these large arrays into smaller ones. Finally,
Parendi’s compilation fails if the design has a combinational
loop.

6 Evaluation
We use the following benchmarks to evaluate Parendi:
• mc [54] is stock option price predictor.
• vta [39] is an ML accelerator. We configure vta with
BlockIn/Out=64 (larger than the default FPGA config-
uration) to expose more parallelism.

• srN is a N × N Constellation [62] mesh NoC consisting of
N×N− 3 small Rocket cores [11] (64-bit, no FPU, no VM),

5Other work handle a single clock without any driven ones [20, 21, 58].
6Parendi has experimental support for DPI to interface with C++.

generated by the Chipyard [10] SoC generator (3 nodes
connect to uncore). We changed N from 2 to 15.

• lrN is similar to srN, but we use large cores with an FPU
and VM. We changed N from 2 to 10.
Note that srN differs from rocket in §4.3 as the latter

is bus-based, whereas srN uses a NoC. These benchmarks
resemble contemporary chip designs, including accelerators
and multicore systems. Varying the mesh size in srN and
lrN explores Parendi’s performance on larger chips. Using
a generic gate library, we estimated sr2 and lr2 to have
about 200 and 320 thousand gates, respectively, while sr15
and lr10 have about 20 million gates (excluding SRAMs).
Due to a bug in popc, we could not evaluate BOOM [63].

We wrap all benchmarks with simple Verilog drivers, with-
out DPI calls.7 Chipyard’s default simulation flow heavily
uses DPI calls to connect the simulation to services provided
by a software RISC-V front-end server. By avoiding non-RTL
software, we ensure that our evaluation of both Parendi
and Verilator does not include extraneous performance in-
fluences from the simulator and front-end communications.

Baseline. Parallel Verilator is our baseline. Other possible
baselines are research artifacts that also explore parallelism.
Verilog is a complex language, so academic works, including
ours, make concessions and focus on techniques rather than
full language coverage and robust implementation. These
systems, unfortunately, cannot run all benchmarks (§7), so
using Verilator permits a fuller evaluation.

Evaluation Setup. Table 2 summarizes the hardware for
our evaluation. For Verilator, we use two modern data center
computers: ae4 is the latest generation AMD server with
large caches and a high core count. The 64 cores in one socket
are constructed from chiplets [1] containing 8 cores. ix3 is
a recent Intel server with no chiplets, less cache, and fewer
cores. For Parendi, we use a 4-IPU M2000 server8.

We use Verilator v5.006 (Parendi is forked from this ver-
sion) with all optimizations enabled (-O3). To find each de-
sign’s best simulation performance on Parendi, we consider
1472, 2944, 4416, and 5888 tiles (1, 2, 3, and 4 IPUs, respec-
tively). On Verilator, we measured each design from 2 to 32
threads (step size of 2) because Verilator takes a long time to
generate multi-threaded code for the larger designs. Table 2
reports the compilation time and memory usage.

6.1 Parendi Vs. Verilator
Fig. 7 reports Parendi’s speedup compared with Verilator.
Overall, Parendi outperforms Verilator. The geometric mean
speedups are 2.81 and 2.75 over ix3 and ae4. Table 3 details
the performance of each platform. We also report size met-
rics for each benchmark: number of data dependence graph
nodes, fibers, x64 instructions to simulate one RTL cycle on

7PLI calls such as $readmemh, $display, $plusargs still exist.
8The M2000 is not the fastest IPU machine available. A newer BOW-2000
IPU clocks at 1.85 GHz (a 37% increase) with the same tile count [2].

789

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Mahyar Emami, Thomas Bourgeat, and James R. Larus

vt
a mc sr
2

sr
3

sr
4

sr
5

sr
6

sr
7

sr
8

sr
9

sr
10

sr
11

sr
12

sr
13

sr
14

sr
15 lr
2

lr
3

lr
4

lr
5

lr
6

lr
7

lr
8

lr
9

lr
10

0
2
4
6

Sp
ee
du
p ipu/x64_ix3 ipu/x64_ae4

2.
81

2.
75

gmean

Figure 7. IPU’s speedup versus multi-thread Verilator.

Compiler Name/Short Cores GHz MiB × Date

Verilator
EPYC 9554 / ae4 64 3.75 2/128/256 2 Q4 2022
Xeon 6348 / ix3 28 3.5 2.2/35/42 2 Q2 2021

Parendi M2000 / ipu 1472 1.35 897 4 Q3 2020

Ubuntu 20.04 popc 3.3 (clang 16.0.0) Verilator v5.006 g++ 10.5.0
Parendi: tiles up to 5888 Verilator: threads up to 32

Compile on Intel Xeon 6132 1.5 TiB Memory
min / max Compile time Memory usage

Parendi 26s / 40m 335 MiB / 55 GiB
Verilator 3s / 8h 223MiB / 1043 GiB

Table 2. Evaluation setup: Cores is the physical core count
per socket. MiB is the cache capacity (L1/L2/L3) for x64 and
the on-chip memory for the IPU. × is the number of sockets.
We use Short names for brevity. We also report the min. and
max. compilation time and compiler memory usage.

a single thread, and Verilator’s code footprint. Furthermore,
for multi-IPU points, we report the KiB size of the variables
exchanged (actual exchange volume is higher due to fanout).

6.2 Verilator’s Performance
Table 3 reports Verilator’s best speedup relative to itself.
Verilator benefits from parallelism when a design is large
(up to 22× speedup). A few points are worth considering:

Synchronization. Fig. 8a shows that smaller designs see
limited speedups. Per §4.1, we expected this behavior: syn-
chronization cost outweighs the gains of parallelism.

Communication is non-uniform. From §4.1 and Fig. 4,
we see that synchronization does not affect large designs.
Fig. 8b shows Verilator achieves significant speedups for
large designs. However, on ae4, speedups fade after 8 threads
(chiplet boundary). On ix3, we see a significant drop after
28 threads (socket boundary). The increased communication
latency across chip boundaries has a noticeable performance
cost, and parallel simulators should be aware of it.
Architecture matters. Fig. 8c shows no clear advantage

between the two x64 machines. In general, ae4 wins for
smaller designs and ix3 for large ones. In some cases, ae4
shows superlinear improvement up to the chiplet boundary.
Such gains are exciting but not uncommon in RTL simulation.
Increasing cores means each core runs less code and accesses
less data, reducing pressure on the local cache, which reduces
cache misses and provides a performance bonus [13, 14, 21,

2 4 6 8
2
4
6
8

Sp
ee
du
p

vtavta

2 4 6 8
Threads

mcmc

2 4 6 8

sr3sr3 ix3
ae4

(a) Verilator’s speedup diminishes quickly for smaller designs as
synchronization is costly.

0 10 20 30
0
10
20
30

Sp
ee
du
p sr15sr15

0 10 20 30
Threads

lr8lr8

0 10 20 30

lr9lr9 ix3
ae4

(b) Non-uniform communication (crossing chiplets or sockets) re-
duces speedups.

5 10 15

5
10
15

Sp
ee
du
p sr6sr6

5 10 15
Threads

sr9sr9

5 10 15

lr4lr4 ix3
ae4

(c) ae4 and ix3 have different scaling profiles due to implementation
differences.

Figure 8. Verilator’s performance and scalability.

1 2 3 4 5 6 7 8
1
2
3

Sp
ee
du
p

vta

1 2 3 4 5 6 7 8
IPU/8

mc

1 2 3 4 5 6 7 8

sr3

(a) Simulation speed on one IPU. We start at 184 tiles (1/8 of an IPU)
and scale to a full IPU (1472 tiles).

1 2 3 4 5 6 7 80.00
0.25
0.50
0.75
1.00 vta

1 2 3 4 5 6 7 8
IPU/8

mc
tcomp tcomm tsync

1 2 3 4 5 6 7 8

sr3

(b) Breakdown of simulation time.

Figure 9. Single-IPU speedup and simulation time break-
down.

790

Parendi: Thousand-Way Parallel RTL Simulation ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

1 2 3 4
1.0
1.2
1.4
1.6

Sp
ee
du
p

sr15

1 2 3 4
IPU

lr8

1 2 3 4

lr9

Figure 10. Performance scaling across multiple IPUs.

36, 58]. However, the superlinear gains disappear when the
local caches cannot hold the working set or chip-cross costs
diminish the value of increased parallelism.

6.3 Parendi’s Performance
On x64, synchronization and communication were the two
causes for reduced performance. On the IPU, only off-chip
communication is a bottleneck, similar to the x64’s off-chiplet
or -socket communication.
Single-IPU scaling. On x64, we cannot consistently use

all cores to increase simulation speed since the synchroniza-
tion or communication costs may limit parallelism gains.
On a single IPU, performance monotonically increases with
additional tiles. Fig. 9a shows the rate for three designs as a
function of the fraction of the IPU. The IPU’s limited local
memory cannot fit a moderately large design on a single tile.
So, we cannot compute speedup relative to a single tile. We
use 184 tiles (18 of an IPU) as the baseline. This is a funda-
mentally different starting point than a single thread on x64,
as it already uses significant parallelism. However, we still
see improvements.9

Fig. 9b shows the breakdown of simulation time for each
design. The vertical axis is normalized to 1

8 of the IPU.
Communication (𝑡𝑐𝑜𝑚𝑚) and synchronization (𝑡𝑠𝑦𝑛𝑐) remain
roughly constant while computation time (𝑡𝑐𝑜𝑚𝑝) decreases
with additional tiles. However, in sr3, the improvement in
𝑡𝑐𝑜𝑚𝑝 ends due to fiber imbalance (see §4.3). The IPU per-
formance is non-decreasing because of its low-cost com-
munication and synchronization, but, to achieve the best
performance on x64, a hardware developer must select the
parallelism for each design and machine (ix3 or ae4).
Multi-IPU scaling.Within one IPU, communication is

relatively cheap, which facilitates scaling. However, com-
munication and synchronization across IPU boundaries is
expensive (§4.2). Therefore, preserving performance mono-
tonicity across IPUs is challenging: crossing IPUs is similar
to crossing chiplets or sockets since off-chip communication

9Fig. 9a shows that vta’s performance remains flat between 4
8 and 6

8 of the
IPU. Such staircase behavior is a characteristic of highly regular fine-grain
parallelism where there are many equal-size straggler processes. Let us
explain using a hypothetical but similar example with 12 equal-size fibers
𝑓1 until 𝑓12. Suppose at first, we run these fibers on 4 balanced processes:
𝑝1 = { 𝑓1, 𝑓2, 𝑓3}, ..., 𝑝4 = { 𝑓10, 𝑓11, 𝑓12}. Using 5 balanced processes, we will
have: 𝑝′1 = { 𝑓1, 𝑓2, 𝑓3}, ..., 𝑝′3 = { 𝑓7, 𝑓8}, 𝑝′4 = { 𝑓9, 𝑓10}, 𝑝′5 = { 𝑓11, 𝑓12}. In
other words, increasing the number of processes did not reduce the worst-
case execution time. However, with 6 processes, we will have: 𝑝′′1 = { 𝑓1, 𝑓2},
..., 𝑝6′′ = { 𝑓11, 𝑓12}, i.e., a 33% improvement in execution time.

4 6 8 10 12 14
srN

4
16
64
256

kH
z

4 5 6 7 8 9 10
lrN

4
8
16
32
64

2

3

4

2
3
4
5

gm
ea
n

ix3 ae4 ipu gmean

Figure 11. Coping with increasing design size. The left axis
shows the best simulation rate. The right axis shows the ge-
omean speedup of Parendi against Verilator (dashed lines).

Tile Tile Tile

N-core SoC 2N-core SoC 3N-core SoC

Figure 12. Fiber imbalance allows us to keep the simulation
rate constant despite increasing design size.

latency increases abruptly (see Fig. 5). However, non-uniform
communication emerges much later on the IPU (after 1472
tiles rather than 8 or 28 threads). Fig. 10 shows the simula-
tion speed across multiple IPUs. Even for very large designs,
running at maximum parallelism may yield a poorer result
so that fewer IPUs can produce marginal gains in some cases.

Improvements are also much smaller off-chip. Going from
1472 tiles to 5888 tiles (4×) in lr9 improves performance
by 60%. However, a 60% gain is still attractive: on x64, it is
difficult to scale beyond 28 threads (ix3), but on the IPU, we
increase performance to 5888 tiles (210× more parallel).
Performance resilience. Parendi can strongly scale the

simulation rate within and across IPUs. But can we can main-
tain a constant simulation rate as we scale the design size
(weak scaling)? Fig. 11 shows the maximum simulation rate
of Parendi and Verilator as a function of mesh size in srN
and lrN. Neither Parendi nor Verilator can keep the sim-
ulation rate perfectly constant, but Parendi is better. For
instance, at the right of Fig. 11, there is a long period in
which Parendi simulates larger designs at the same rate.
Verilator’s rate slowly drops in this region, and the speedup
(Parendi vs. Verilator) increases.

While fiber imbalance severely limits the performance of
a small or medium RTL design, limiting strong scaling, it
actually enables better weak scaling. Fig. 12 shows how it
happens. Consider an SoC with 𝑁 cores and a sizable imbal-
ance among its fibers, as shown on the left. If we double the
size of the SoC, we double the number of fibers. Because only
a small portion of fibers have significantly longer execution
time, we can tolerate increasingly larger designs and keep
the simulation rate constant using unused parallel resources
(Fig. 12). However, the utilization of tiles starts to balance at
some point, after which increasing the design size decreases
the simulation rate.

791

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Mahyar Emami, Thomas Bourgeat, and James R. Larus

Be
nc
h ix3 ae4 Parendi Speedup

st-kHz mt-kHz #T gain st-kHz mt-kHz #T gain kHz #T ix3 ae4 gmean MiB #I (M) #N (K) #F (K) Int. Ext.

vta 30.91 113.75 4 3.7 44.79 164.73 4 3.7 454.10 1472 3.99 2.76 3.32 1.5 0.17 23.5 6.0 28.7 —
mc 28.68 88.96 8 3.1 37.55 143.88 8 3.8 592.83 1472 6.66 4.12 5.24 1.0 0.15 26.9 7.5 24.2 —
sr2 123.40 76.22 2 0.6 176.49 145.75 4 0.8 91.20 1472 0.74 0.52 0.62 1.2 0.06 12.7 2.8 12.8 —
sr3 20.95 40.95 8 2.0 28.71 77.66 8 2.7 83.95 1472 2.05 1.08 1.49 3.1 0.17 36.3 8.1 33.9 —
sr4 8.79 30.93 22 3.5 7.23 54.79 8 7.6 85.09 1472 2.75 1.55 2.07 5.5 0.32 68.2 15.3 63.5 —
sr5 5.23 24.34 26 4.6 4.26 40.09 8 9.4 84.28 1472 3.46 2.10 2.70 8.6 0.50 107.9 24.2 101.5 —
sr6 3.53 23.11 20 6.5 2.90 30.51 8 10.5 76.63 1472 3.32 2.51 2.89 12.2 0.72 156.0 35.0 145.4 —
sr7 2.47 18.83 28 7.6 2.10 22.72 8 10.8 71.33 2944 3.79 3.14 3.45 16.6 0.99 212.6 47.7 199.2 0.9
sr8 1.82 17.94 26 9.9 1.58 13.66 8 8.7 57.39 2944 3.20 4.20 3.66 21.6 1.29 277.3 62.3 259.0 1.1
sr9 1.37 15.56 28 11.4 1.22 11.72 32 9.6 58.79 4416 3.78 5.02 4.35 27.4 1.65 351.4 78.8 328.8 1.7
sr10 1.06 15.03 24 14.1 0.97 10.83 32 11.1 52.77 2944 3.51 4.87 4.14 33.8 2.03 433.5 97.2 396.3 1.3
sr11 0.85 13.59 26 16.0 0.79 10.21 32 12.9 47.71 5888 3.51 4.67 4.05 40.9 2.47 524.6 117.5 488.0 3.3
sr12 0.70 12.98 28 18.5 0.65 8.79 32 13.5 43.30 5888 3.34 4.93 4.05 48.6 2.93 623.7 139.7 579.5 3.1
sr13 0.58 11.40 28 19.5 0.54 8.18 32 15.2 37.83 4416 3.32 4.62 3.92 56.9 3.44 731.1 163.9 665.7 2.3
sr14 0.50 10.37 28 20.8 0.44 7.09 32 16.1 34.98 5888 3.37 4.93 4.08 65.9 3.99 847.0 189.9 775.2 3.4
sr15 0.43 9.22 28 21.6 0.33 6.51 32 20.0 31.69 5888 3.44 4.86 4.09 75.6 4.58 972.2 217.9 886.9 3.7
lr2 69.07 70.69 2 1.0 123.55 132.09 8 1.1 64.58 1472 0.91 0.49 0.67 1.6 0.09 16.5 3.7 16.2 —
lr3 8.74 33.89 12 3.9 7.79 60.93 8 7.8 58.73 1472 1.73 0.96 1.29 5.7 0.36 59.4 13.3 55.5 —
lr4 4.13 25.27 22 6.1 3.61 38.97 8 10.8 50.93 5888 2.02 1.31 1.62 11.1 0.73 118.2 26.7 109.9 1.8
lr5 2.36 23.56 26 10.0 2.15 21.87 8 10.2 50.09 5888 2.13 2.29 2.21 17.8 1.20 192.4 43.4 178.4 2.0
lr6 1.50 17.86 28 11.9 1.43 13.15 30 9.2 39.84 1472 2.23 3.03 2.60 26.0 1.77 282.8 63.7 256.2 —
lr7 1.03 14.73 28 14.3 1.01 10.41 30 10.3 39.00 2944 2.65 3.74 3.15 35.8 2.45 389.4 87.7 354.8 1.3
lr8 0.74 12.52 28 16.9 0.74 8.60 32 11.6 39.02 2944 3.12 4.54 3.76 47.0 3.24 511.8 115.4 463.9 1.0
lr9 0.58 10.63 26 18.5 0.56 7.57 32 13.4 38.22 4416 3.60 5.05 4.26 59.8 4.14 651.3 146.7 595.8 1.6
lr10 0.45 9.27 28 20.6 0.37 6.27 32 17.0 38.24 5888 4.13 6.10 5.02 74.0 5.12 806.4 181.7 734.9 3.2

gmean 2.81 2.75 2.78

Table 3. st-kHz, mt-kHz are single- and multi-thread Verilator performance (blue is best of ix3–ae4). kHz is best Parendi
rate. gain is Verilator’s self-relative speedup (underscored superlinear). #T is threads or tile count. Speedup is Parendi vs.
Verilator (green ≥ 2 and red < 1). gmean is reported across machines and benchmarks.MiB is Verilator’s binary size. #I is the
millions of x64 instructions per RTL cycle (Verilator). #N is thousands of data dependence graph nodes. #F is thousands of
fibers. Int. and Ext. are KiBs on- and off-chip cut size (lower than actual communication volume due to fanout).

6.4 Cost Comparison
The IPU’s performance advantage for large designs makes it
more cost-effective than other systems. The cloud hosting
service GCore offered IPU-POD4 classic instances (an M2000,
see Table 2) for $2.13 per hour [2]. A Dv4 Microsoft Azure
instance (Xeon 8272CL) costs $0.048 per hour per core [3] or
$0.77 per hour for 16 cores. We use the sr15 design to briefly
compare the cost of running long and short simulations on
Parendi and Verilator. We exclude compilation time and cost
from our analysis.
Single Long Test. Consider simulating sr15 for 1 billion

cycles. On Dv4, the simulation scales from 222 Hz (1 thread)
to 4.88 kHz (16 threads, a superlinear 22× speedup, but slows
down beyond 16 threads). The rate on IPU-POD4 scales from
22.94 kHz (1 IPU) to 31.69 kHz (4 IPUs). So, IPU-POD4 finishes
the simulation in 9 hours, costing $19.20. But, Dv4 takes 57
hours and costs $43.78 (16 threads).

A back-of-the-envelope calculation shows that IPU-POD4
is always more cost-effective than Dv4 irrespective of the
number of rented cores. Let 𝑡 be the number of Verilator

0.0
0.5
1.0
1.5

ho
ur
s

$0
.1

$0
.3

N = 16

$1

$0
.7

0
1
2
3

$0
.2

$0
.6

N = 32

$3

$1 0
2
4
6

$0
.4

$1

N = 64

$6

$3
ad-hoc fine0

4
8
12

ho
ur
s

$0
.8

$2

N = 128

$1
2

$6

ad-hoc fine0
8
16
24

$2 $5

N = 256

$2
3

$1
1

ad-hoc fine0
20
40
60

$3 $1
0

N = 512
$4
7

$2
2

ipu x64

Figure 13. Nightly test simulation time (in hours, sr15) on
a 16-core Dv4 instance (x64) and the IPU-POD4 classic (ipu).
Numbers on bars are total cost and N is number of run tests.

threads and 𝑠 be its speedup (vs. single-thread performance).
Four IPUs run 142.74× faster than single-thread Dv4. So long
as 𝑠

𝑡
< 142.74 × 0.048

2.13 = 3.2, Dv4 with 𝑡 threads will cost
more than IPU-POD4. Since linear scaling is 𝑠

𝑡
= 1, Verila-

tor would become cost-effective only at a 3.2× superlinear
scaling, which is very far from what we observe.

792

Parendi: Thousand-Way Parallel RTL Simulation ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Several Short Tests.We now run many short—1 million
cycles—“nightly regression” tests using two strategies. First,
the most straightforward strategy: On Dv4, we assign a core
per test, running 16 tests in parallel. Since it is impossible to
assign one IPU tile to each test (there is not enough memory),
we conservatively assign one IPU to each test and run four
tests in parallel at a time on IPU-POD4. We call this ad-hoc
parallelism. Second, we run each test with an optimal number
of threads or tiles, which is 16 on Dv4 and 5888 on IPU-POD4.
We call this fine-grained parallelism, as for this benchmark,
we end up exploiting parallelismwithin each test but running
the tests one after the other.

Admittedly, these scheduling strategies do not explore the
performance-cost space systematically; they illustrate the
two obvious alternatives. Fig. 13 shows the time to finish
N tests. The numbers on each bar show the total cost. On
the IPU, ad-hoc parallelism is more cost-effective because
fine-grained parallelism scales sublinearly. On the x64, we
see the opposite trend since ad-hoc parallelism scales almost
linearly, while fine-grained parallelism scales superlinearly
(22× on 16 threads). The fine-grained parallelism finishes
faster. Regardless, Parendi is cheaper for both approaches
since its performance edge exceeds the cost difference.
Power and Energy Estimates. We measured that the 4

IPUs consume 185W. Due to security limitations, we could
not measure power draw on our x64 baselines. The ae4 and
ix3 TDP’s are 320W and 235W, respectively. We estimate the
power draw to be 80W and 118W as we use a quarter of the
cores on ae4 and half on ix3. sr15 on the IPU is 4.86× faster
than ae4 and 3.44× faster than ix3, so the IPU’s energy draw
is about 2× lower than x64.

6.5 Comparison with Other Systems
RepCut. RepCut [58] is a BSP RTL simulator (full-cycle)
for firrtl [27] on x64. RepCut demonstrates superlinear
speedups within and across sockets (we saw a similar effect
with chiplets). It improved simulation up to 32 cores (48-core
machine) but showed no gains beyond that.

We were unable to compare directly for frustrating practi-
cal reasons. Chipyard’s CIRCT backend has replaced the first
firrtl Scala compiler that RepCut is based on. The new
version cannot ingest the srN and lrN designs produced by
Chipyard—there is no reliable way to convert Verilog back to
firrtl. However, we were able to simulate an older Rocket
SoC (based on git hash 4276f17f9) with RepCut and compare
it against Parendi. We ported our lightweight Chipyard test
driver, free of DPI calls, to the Rocket SoC and removed all
internal print statements. We found that the stock test driver
for Rocket SoC (and Chipyard) severely limits performance.
RepCut reports a 1-core Rocket SoC simulates at ≈10 kHz
on Verilator and ≈50 kHz on RepCut (single-thread). We
reproduced these results. However, with our streamlined
test driver, the benchmarks ran at 276 kHz on Verilator and

80
160
240

kH
z

1 core

40
80
120

2 cores

25
50
75
100 4 cores

0 8 16 24 32
20
40
60

kH
z

8 cores

0 8 16 24 32
Threads

20
40
60

16 cores

0 8 16 24 320
15
30
45

32 cores
vlt
rct

ipu

Figure 14. Performance of RepCut (rct) [58], Verilator (vlt),
and ipu. Figure legend is on the bottom right.

bc blur vta mm cgra rv32r noc mc0.0
0.5
1.0
1.5

Sp
ee
du
p

ipu
mcr

Figure 15. Comparison of ipu and Manticore (mcr).

75 kHz on RepCut (on ae4), showing that the original Rocket
test driver is a debatable baseline.

Fig. 14 compares Verilator, RepCut, and Parendi for vari-
ous SoC sizes. We ran Verilator and RepCut simulations on
ae4 up to 32 threads. Parendi ran on a single IPU. Verilator
is fastest for smaller designs, RepCut gains a small advantage
for medium SoCs, and Parendi performs best for the largest.
Code generated by RepCut for the 32-core SoC crashes clang.

Manticore. Manticore [21] is a 225-core, statically sched-
uled, deeply pipelined architecture designed for BSP RTL
simulation and prototyped on an FPGA. Manticore’s com-
piler frontend does not support Verilog’s packed arrays used
abundantly in lrN and srN. Moreover, since FPGAs have lim-
ited memory, large designs do not fit on Manticore. Fig. 15
compares Parendi (1472 tiles) to Manticore (225 cores) using
the raw numbers reported in their work [21] (see [21] for
the description of the designs). Manticore’s huge register file
lets it achieve a higher single-core rate than the IPU. So, the
small bc design runs faster on it, but the larger vta and mc
designs benefit from Parendi’s greater parallelism.

6.6 Partitioning Strategies
So far, we have used the partitioning strategy outlined in §5.1.
This section considers alternative strategies for partitioning
fibers within and across IPUs.

Single-IPU Partitioning. RepCut [58] formulates SLB as
a hypergraph partitioning problem where hypergraph nodes
fibers and hyperedges represent duplicated clusters across
fibers. We implemented this strategy as an alternative. Fig. 16
compares the default bottom-up (B, §5.1) strategy against
hypergraph partitioning (H) on a single IPU (1472-way par-
titioning). Neither strategy is uniformly better. Bottom-up
performs best with srN, whereas hypergraph is sometimes
better with lrN.

793

https://github.com/chipsalliance/rocket-chip/

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Mahyar Emami, Thomas Bourgeat, and James R. Larus

sr4 sr5 sr6 sr7 lr2 lr3 lr4 lr5
B H B H B H B H B H B H B H B H0.00

0.25
0.50
0.75
1.00
1.25

Cy
cl
es

sync
comm
comp

Figure 16. Comparison of Parendi’s bottom-up SLB algo-
rithm (B) against RepCut’s hypergraph approach (H) [58].
The vertical axis shows normalized IPU machine cycles per
RTL cycle (lower is better).

sr9 sr14 lr8 lr100.00
0.25
0.50
0.75
1.00

Ra
te

pre
post
none

Figure 17.Normalized simulation rate for 4-IPU partitioning
strategies. Partitioning fibers premerge performs better than
partitioning processes post merge. Ignoring the muli-IPU
configuration (none) yields vastly inferior results.

Multi-IPU Partitioning. Fig. 17 compares three strate-
gies for multi-device partitioning of 4 IPUs: (pre) partition
fibers across IPUs before merging them into processes (de-
fault Parendi strategy), (post) partition processes across IPU,
i.e., after merging fibers into processes, and (none) does not
partition, i.e., multi-IPU oblivious.
Not partitioning fibers or processes across IPUs yields

inferior performance. Partitioning fibers works better than
partitioning processes. The former approach offers more
degrees of freedom for partitioning since the earlier process
merge may suboptimally absorb some good cuts and land in
a region of the design space that is only locally optimal.

6.7 Discussion
Fast simulation requires a simulator that exploits the fine-
grain parallelism of RTL and effectively utilizes the features
of the underlying hardware platform. Verilator fails to scale
because its frequent fine-grain synchronization overuses the
x64’s costly synchronization and communication. Parendi
scales better, albeit from lower single-core performance, be-
cause an IPU efficiently supports BSP synchronization and
low-latency communication. However, the IPU’s high off-
chip latency demands effective RTL partitioning to minimize
cross-chip traffic. When we started this project, we expected
no speed gains from multiple IPUs and only planned to use
additional IPUs when we ran out of memory. We were sur-
prised to find speedups to even 5888 cores and believe com-
piler improvements would increase performance further.

VLSI design practices explain why speedups are possible
on thousands of cores. Optimizing circuit performance for
synthesis, placement, and routing requires a floorplan that
is aware of physical constraints such as pin placement. A
good design facilitates floorplanning and optimizes off-chip

communication in its simulation—there is a natural minimal
cut. The critical path length in a VLSI circuit limits the clock
rate, just as the straggler fiber and its cone of logic limit the
simulation rate. A fast circuit design minimizes the critical
path length, indirectly minimizing the critical cone of logic
(area) and producing many fibers. In general, faster circuits
should simulate faster and utilize parallelism better.
The lessons from Parendi may help apply BSP for RTL

simulation on other parallel architectures. Low-latency mem-
ory (SRAM) capacity is the main enabler of high-speed
medium-to-large RTL simulations (and a bottleneck on x86).
Other architectures such as Groq [7, 8] or Cerebras [33] offer
considerable low-latency memory and might be good plat-
forms for RTL simulation. By contrast, the NVIDIA H100
GPU has only ≈50 MiBs of shared on-chip memory. As a
result, GPUs are unlikely to perform well using the BSP
execution model. Besides SRAM capacity, low-cost synchro-
nization is essential for BSP RTL simulation on an accel-
erator. The IPU (and perhaps a Groq-like architecture) has
predictably low synchronization costs, as computation and
communication are almost entirely statically scheduled. Ten-
tative experiments found (not presented in the paper) that
full-device synchronization on GPUs does not share the same
predictably low latencies.

7 Related Work
Parendi is the first RTL simulator for a few thousand cores.
Prior work used tens of CPU and GPU cores or a few hundred
specialized cores. In addition, prior work uses software or
FPGA emulation to simulate thousand-core SoCs.

7.1 Tens of Cores
Verilator and RepCut [58] are parallel, full-cycle RTL sim-
ulators that target commodity processors with few tens of
cores. Both are limited by the x64’s expensive synchroniza-
tion and communication, as shown earlier. Other research
on parallel, event-driven techniques focuses on finer granu-
larity rather than full-cycle simulation. They employ smart
concurrency techniques on x64 to avoid computation/com-
munication [9, 31, 34, 61]. SAGA [57] achieves a 16× parallel
speedup on GPUs by statically scheduling SystemC [41].
GCS [16–18] employs levelization [59, 60] and acclerates
gate-level simulation on GPUs.

7.2 Hundreds of Cores
100+ core general-purpose machines are uncommon, except
in GPUs and accelerators. Since RTL is irregular, SIMD execu-
tion on a GPU typically yields low thread utilization. Qian et
al. [43] describe a GPU-accelerated, event-driven simulator
with a single thread per GPU core (i.e., 1

32 Warp utilization).
RTLFlow [35] fully utilizes a GPU by independently simulat-
ing a single design driven by multiple test vectors. RTLFlow
performs comparably to Verilator with 1K test vectors but

794

Parendi: Thousand-Way Parallel RTL Simulation ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

runs 40× faster with 64K tests. RTLFlow is limited by avail-
able GPU memory, as described in [20]. Nexus [15] is an
FPGA-based parallel RTL simulator with a systolic array
of 240 8-bit processors. Like Manticore, Nexus suffers from
limited SRAM resources on FPGAs. ASH [20] extends the
Swarm architecture [28] with prioritized dataflow to acceler-
ate RTL simulation. It comprises 256 simple x64 cores with
dedicated task queues to support efficient event-driven sim-
ulation. ASH demonstrated a 32× speedup over Verilator
running on a simulator (it has not been prototyped).

7.3 Thousands of Cores
Most previous work on thousand-way parallel simulation
used C++ processor (architectural) models, not RTL. An RTL
simulator parallelizes a model (the code), whereas an archi-
tectural simulator implements parallel models. Hence, the
simulator developer must parallelize the code rather than
our compiler. Moreover, many architectural simulators com-
promise modeling accuracy to enable efficient parallel ex-
ecution [19, 38, 52, 65], which is incompatible with RTL’s
rigid semantics. Some architectural simulators use multi-
ple machines for large-scale simulation [24, 26, 36, 38]. Like
Parendi, the motivation for distributed simulation is to use
multiple machines’ computing and memory resources.
Metro-MPI [36] is a framework for manually connect-

ing independent simulations of hardware components that
interact over a clearly defined interface, such as a NoC. It
does not compile an RTL design into an executable that
can simulate a design. Instead, it utilizes coarse-grain paral-
lelism and concurrently simulates one or a few components
on each core. Theoretically, Metro-MPI could exploit fine-
grain parallelism by dedicating several cores to a simulation
and running Verilator in parallel. However, realistically, it
requires implementation and fine-tuning on a per-project
basis. By contrast, Parendi automatically (without developer
assistance) extracts fine-grain parallelism across an entire
RTL design, groups it into appropriate-sized computations,
and maps them to available computing resources. That said,
Metro-MPI manages to evaluate a design that is ≈20× larger
than the largest design we evaluated in this work (i.e., sr15
and lr10). We estimate this difference: Metro-MPI evalu-
ates a 1000-core chip containing 10 billion transistors, or
perhaps 1 billion generic gates, including SRAM. As men-
tioned in §6, lr10 has ≈20 million gates, excluding SRAM.
Including SRAM in our estimation, lr10 probably contains
50 million gates, 20× smaller than Metro-MPI’s workload.

Emulating large systems on FPGAs is an alternative to sim-
ulation, but capacity and compile time are significant chal-
lenges. FireSim [30] and DIABLO [53] simulate warehouse-
scale computers, but individual FPGAs limit the overall scale
(e.g., 8-core processor). Other emulation platforms connect
many FPGAs into a single logical FPGA [12, 32] to circum-
vent resource limits. These systems share problems, such as
partitioning, with software-based RTL simulation but also

suffer from protracted compilation time (hours to days) to
map logic to FPGA primitives. However, they can emulate
large systems as fast as 1 MHz at a high price.

8 Conclusion
Thousand-way parallel RTL simulation is becoming neces-
sary. Current simulation techniques can adequately exploit
only tens of cores in general-purpose processors because of
their high synchronization and communication costs.
We used a 1472-core computer, the Graphcore IPU, to

study the feasibility and challenges of massively parallel
simulation. Our study analyzed three dimensions of parallel
simulation: synchronization, communication, and computa-
tion. Using these results, we implemented Parendi, an RTL
compiler that can use up to 5888 cores effectively. Despite
the IPU’s almost 84× single-core performance disadvantage
against x64 machines, Parendi runs up to 4× faster on large
designs.
Our work demonstrates that thousand-way parallel RTL

simulation is practical and beneficial. It opens new avenues
for future research that speeds up RTL simulation on mas-
sively parallel systems.

9 Acknowledgements
We are grateful to Graphcore for lending us the M2000 hard-
ware. We thank the the Graphcore staff and engineers, espe-
cially Mark Pupilli, Dario Domizioli, Peter Birch, Svetlomir
Hristozkov, Marie-Ann Le Menn, and David Bozier. They
helped us throughout the project development, from getting
us started to detailed explanations of the inner workings of
poplar and popc, and providing feedback on our work.

At EPFL, Sahand Kashani and Rishabh Iyer’s feedback on
the writing and paper’s narrative helped us make significant
improvements. Furthermore, Sanidhya Kashyap generously
allowed us to use their machines to benchmark Verilator.
We thank Edouard Bugnion and Margaret Church for their
support in the last year of the Very Large Scale Laboratory
at EPFL. Last but not least, we thank Jiacheng Ma, who made
us realize the potential of using the IPUs for RTL simulation.

References
[1] 4th gen AMD EPYC Processor Archiecture. Technical report, AMD.
[2] AI IPU Cloud Infrastructure. https://gcore.com/cloud/ai-platform.

Accessed: 22-11-2023.
[3] Azure pricing calculator. https://azure.microsoft.com/en-us/pricing/

calculator/. Accessed 24-06-2024.
[4] Introducing the Colussus MK2 GC200 IPU. https://www.graphcore.ai/

products/ipu. Accessed: 2023-11-23.
[5] Open-Source FPGA Bitcoin Miner. https://github.com/progranism/

Open-Source-FPGA-Bitcoin-Miner.
[6] Poplar Graph Programming Framework. https://docs.graphcore.ai/en/

latest/child-pages/poplar.html#poplar.
[7] Dennis Abts, Garrin Kimmell, Andrew C. Ling, John Kim, Matthew

Boyd, Andrew Bitar, Sahil Parmar, Ibrahim Ahmed, Roberto DiCecco,
David Han, John Thompson, Michael Bye, Jennifer Hwang, Jeremy
Fowers, Peter Lillian, Ashwin Murthy, Elyas Mehtabuddin, Chetan

795

https://gcore.com/cloud/ai-platform
https://azure.microsoft.com/en-us/pricing/calculator/
https://azure.microsoft.com/en-us/pricing/calculator/
https://www.graphcore.ai/products/ipu
https://www.graphcore.ai/products/ipu
https://github.com/progranism/Open-Source-FPGA-Bitcoin-Miner
https://github.com/progranism/Open-Source-FPGA-Bitcoin-Miner
https://docs.graphcore.ai/en/latest/child-pages/poplar.html#poplar
https://docs.graphcore.ai/en/latest/child-pages/poplar.html#poplar

ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Mahyar Emami, Thomas Bourgeat, and James R. Larus

Tekur, Thomas Sohmers, Kris Kang, Stephen Maresh, and Jonathan
Ross. A software-defined tensor streaming multiprocessor for large-
scale machine learning. In Proceedings of the 49th International Sym-
posium on Computer Architecture (ISCA), pages 567–580, 2022.

[8] Dennis Abts, Jonathan Ross, Jonathan Sparling, MarkWong-VanHaren,
Max Baker, Tom Hawkins, Andrew Bell, John Thompson, Temes-
ghen Kahsai, Garrin Kimmell, Jennifer Hwang, Rebekah Leslie-Hurd,
Michael Bye, E. R. Creswick, Matthew Boyd, Mahitha Venigalla,
Evan Laforge, Jon Purdy, Purushotham Kamath, Dinesh Maheshwari,
Michael Beidler, Geert Rosseel, Omar Ahmad, Gleb Gagarin, Richard
Czekalski, Ashay Rane, Sahil Parmar, Jeff Werner, Jim Sproch, Adrian
Macias, and Brian Kurtz. Think Fast: A Tensor Streaming Processor
(TSP) for Accelerating Deep Learning Workloads. In Proceedings of the
47th International Symposium on Computer Architecture (ISCA), pages
145–158, 2020.

[9] Tariq Bashir Ahmad, Namdo Kim, Byeong Min, Apurva Kalia, Maciej
Ciesielski, and Seiyang Yang. Scalable parallel event-driven HDL sim-
ulation for multi-cores. In 2012 International Conference on Synthesis,
Modeling, Analysis and Simulation Methods and Applications to Circuit
Design (SMACD), pages 217–220, 2012.

[10] Alon Amid, David Biancolin, Abraham Gonzalez, Daniel Grubb, Sagar
Karandikar, Harrison Liew, Albert Magyar, Howard Mao, Albert J. Ou,
Nathan Pemberton, Paul Rigge, Colin Schmidt, John Charles Wright,
Jerry Zhao, Yakun Sophia Shao, Krste Asanovic, and Borivoje Nikolic.
Chipyard: Integrated Design, Simulation, and Implementation Frame-
work for Custom SoCs. IEEE Micro, 40(4):10–21, 2020.

[11] Krste Asanović, Rimas Avižienis, Jonathan Bachrach, Scott Beamer,
David Biancolin, Christopher Celio, Henry Cook, Palmer Dabbelt, John
Hauser, Adam Izraelevitz, Sagar Karandikar, Benjamin Keller, Dong-
gyu Kim, John Koenig, Yunsup Lee, Eric Love, Martin Maas, Albert
Magyar, Howard Mao, Miquel Moreto, Albert Ou, David Patterson,
Brian Richards, Colin Schmidt, Stephen Twigg, Huy Vo, and Andrew
Waterman. The Rocket Chip Generator. Technical report, University
of California, Berkeley, 2016.

[12] Jonathan Babb, Russell Tessier, Matthew Dahl, Silvina Hanono,
DavidM. Hoki, and Anant Agarwal. Logic emulationwith virtual wires.
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 16(6):609–626,
1997.

[13] Scott Beamer. A Case for Accelerating Software RTL Simulation. IEEE
Micro, 40(4):112–119, 2020.

[14] Scott Beamer and David Donofrio. Efficiently exploiting low activity
factors to accelerate RTL simulation. In 57th ACM/IEEE Design Au-
tomation Conference, DAC 2020, San Francisco, CA, USA, July 20-24,
2020, pages 1–6. IEEE, 2020.

[15] Peter Birch. Open source FPGA-based emulation with Nexus. In
Workshop on Open-Source EDA Technology (WOSET), number 1, 2022.

[16] Debapriya Chatterjee, Andrew DeOrio, and Valeria Bertacco. Event-
driven gate-level simulation with GP-GPUs. In Proceedings of the 46th
Design Automation Conference, DAC 2009, San Francisco, CA, USA, July
26-31, 2009, pages 557–562. ACM, 2009.

[17] Debapriya Chatterjee, Andrew DeOrio, and Valeria Bertacco. GCS:
High-performance gate-level simulation with GPGPUs. In Luca Benini,
Giovanni De Micheli, Bashir M. Al-Hashimi, and Wolfgang Müller,
editors, Design, Automation and Test in Europe, DATE 2009, Nice, France,
April 20-24, 2009, pages 1332–1337. IEEE, 2009.

[18] Debapriya Chatterjee, Andrew DeOrio, and Valeria Bertacco. Gate-
Level Simulation with GPU Computing. ACM Trans. Design Autom.
Electr. Syst., 16(3):30:1–30:26, 2011.

[19] Jianwei Chen, Murali Annavaram, and Michel Dubois. SlackSim: a
platform for parallel simulations of CMPs on CMPs. SIGARCH Comput.
Archit. News, 37(2):20–29, 2009.

[20] Fares Elsabbagh, Shabnam Sheikhha, Victor A. Ying, Quan M. Nguyen,
Joel S. Emer, and Daniel Sánchez. Accelerating RTL Simulation with
Hardware-Software Co-Design. In Proceedings of the 56th Annual

IEEE/ACM International Symposium on Microarchitecture, MICRO 2023,
Toronto, ON, Canada, 28 October 2023 - 1 November 2023, pages 153–166.
ACM, 2023.

[21] Mahyar Emami, Sahand Kashani, Keisuke Kamahori, Moham-
mad Sepehr Pourghannad, Ritik Raj, and James R. Larus. Manticore:
Hardware-Accelerated RTL Simulation with Static Bulk-Synchronous
Parallelism. In Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, Volume 4, ASPLOS ’23, page 219–237, New York, NY, USA,
2024. Association for Computing Machinery.

[22] Harry Foster. Part 4: The 2020 Wilson Research Group Functional
Verification Study, FPGA Verification Effort Trends, 12 2020.

[23] Harry Foster. Part 8: The 2020 Wilson Research Group Functional
Verification Study, IC/ASIC Resource Trends, 1 2021.

[24] Yaosheng Fu and David Wentzlaff. PriME: A parallel and distributed
simulator for thousand-core chips. In Proceedings of the 2014 IEEE Inter-
national Symposium on Performance Analysis of Systems and Software
(ISPASS), pages 116–125, 2014.

[25] M. R. Garey, Ronald L. Graham, and David S. Johnson. Performance
Guarantees for Scheduling Algorithms. Oper. Res., 26(1):3–21, 1978.

[26] Steven Herbst, Noah Moroze, Edgar Iglesias, and Andreas Olofsson.
Switchboard: An Open-Source Framework for Modular Simulation of
Large Hardware Systems. ArXiv, abs/2407.20537, 2024.

[27] AdamM. Izraelevitz, Jack Koenig, Patrick Li, Richard Lin, Angie Wang,
Albert Magyar, Donggyu Kim, Colin Schmidt, Chick Markley, Jim Law-
son, and Jonathan Bachrach. Reusability is FIRRTL ground: Hardware
construction languages, compiler frameworks, and transformations.
In 2017 IEEE/ACM International Conference on Computer-Aided Design,
ICCAD 2017, Irvine, CA, USA, November 13-16, 2017, pages 209–216.
IEEE, 2017.

[28] Mark C. Jeffrey, Suvinay Subramanian, Cong Yan, Joel S. Emer, and
Daniel Sánchez. A scalable architecture for ordered parallelism. In
Proceedings of the 48th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 228–241, 2015.

[29] Zhe Jia, Blake Tillman, Marco Maggioni, and Daniele Paolo Scarpazza.
Dissecting the Graphcore IPU Architecture via Microbenchmarking.
CoRR, abs/1912.03413, 2019.

[30] Sagar Karandikar, Howard Mao, Donggyu Kim, David Biancolin,
Alon Amid, Dayeol Lee, Nathan Pemberton, Emmanuel Amaro, Colin
Schmidt, Aditya Chopra, Qijing Huang, Kyle Kovacs, Borivoje Nikolic,
Randy Howard Katz, Jonathan Bachrach, and Krste Asanovic. FireSim:
FPGA-Accelerated Cycle-Exact Scale-Out System Simulation in the
Public Cloud. IEEE Micro, 39(3):56–65, 2019.

[31] Dusung Kim, Maciej J. Ciesielski, and Seiyang Yang. A new distributed
event-driven gate-level HDL simulation by accurate prediction. In
Design, Automation and Test in Europe, DATE 2011, Grenoble, France,
March 14-18, 2011, pages 547–550. IEEE, 2011.

[32] Helena Krupnova and Gabriele Saucier. FPGA-based emulation: In-
dustrial and custom prototyping solutions. In Proceedings of the The
Roadmap to Reconfigurable Computing, 10th International Workshop
on Field-Programmable Logic and Applications, FPL ’00, page 68–77,
Berlin, Heidelberg, 2000. Springer-Verlag.

[33] Gary Lauterbach. The Path to Successful Wafer-Scale Integration: The
Cerebras Story. IEEE Micro, 41(6):52–57, 2021.

[34] Tun Li, Yang Guo, and Sikun Li. Design and Implementation of a
Parallel Verilog Simulator: PVSim. In VLSI Design, pages 329–334,
2004.

[35] Dian-Lun Lin, Haoxing Ren, Yanqing Zhang, Brucek Khailany, and
Tsung-Wei Huang. From RTL to CUDA: A GPU Acceleration Flow
for RTL Simulation with Batch Stimulus. In Proceedings of the 51st
International Conference on Parallel Processing, ICPP 2022, Bordeaux,
France, 29 August 2022 - 1 September 2022, pages 88:1–88:12. ACM,
2022.

796

Parendi: Thousand-Way Parallel RTL Simulation ASPLOS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

[36] Guillem López-Paradís, Brian Li, Adrià Armejach, StefanWallentowitz,
Miquel Moretó, and Jonathan Balkind. Fast Behavioural RTL Simula-
tion of 10B Transistor SoC Designs with Metro-Mpi. In Design, Au-
tomation & Test in Europe Conference & Exhibition, DATE 2023, Antwerp,
Belgium, April 17-19, 2023, pages 1–6. IEEE, 2023.

[37] George Marsaglia. Xorshift RNGs. Journal of Statistical Software,
8(14):1–6, 2003.

[38] Jason E. Miller, Harshad Kasture, George Kurian, Charles Gruenwald
III, Nathan Beckmann, Christopher Celio, Jonathan Eastep, and Anant
Agarwal. Graphite: A distributed parallel simulator for multicores. In
Proceedings of the 16th IEEE Symposium on High-Performance Computer
Architecture (HPCA), pages 1–12, 2010.

[39] Thierry Moreau, Tianqi Chen, Luis Vega, Jared Roesch, Eddie Q. Yan,
Lianmin Zheng, Josh Fromm, Ziheng Jiang, Luis Ceze, Carlos Guestrin,
and Arvind Krishnamurthy. A Hardware-Software Blueprint for Flexi-
ble Deep Learning Specialization. IEEE Micro, 39(5):8–16, 2019.

[40] Mahesh Nanjundappa, Hiren D. Patel, Bijoy Antony Jose, and
Sandeep K. Shukla. SCGPSim: a fast SystemC simulator on GPUs.
In Proceedings of the 15th Asia South Pacific Design Automation Confer-
ence, ASP-DAC 2010, Taipei, Taiwan, January 18-21, 2010, pages 149–154.
IEEE, 2010.

[41] OSCI. SystemC. https://www.systemc.org.
[42] PicoRV32 - A Size-Optimized RISC-V CPU. https://github.com/

YosysHQ/picorv32.
[43] Hao Qian and Yangdong Deng. Accelerating RTL simulation with

GPUs. In Joel R. Phillips, Alan J. Hu, and Helmut Graeb, editors, 2011
IEEE/ACM International Conference on Computer-Aided Design, ICCAD
2011, San Jose, California, USA, November 7-10, 2011, pages 687–693.
IEEE Computer Society, 2011.

[44] Karl Rupp. Microprocessor trend data. https://github.com/karlrupp/

microprocessor-trend-data, 2022. Accessed: 18-10-2023.
[45] Sartaj Sahni. Algorithms for Scheduling Independent Tasks. J. ACM,

23(1):116–127, 1976.
[46] Vivek Sarkar and John L. Hennessy. Compile-time partitioning and

scheduling of parallel programs. In SIGPLAN Symposium on Compiler
Construction, pages 17–26, 1986.

[47] Sebastian Schlag, Tobias Heuer, Lars Gottesbüren, Yaroslav Akhremt-
sev, Christian Schulz, and Peter Sanders. High-Quality Hypergraph
Partitioning. ACM J. Exp. Algorithmics, 27:1.9:1–1.9:39, 2022.

[48] Wilson Snyder. Verilator, accelerated: Accelerating development, and
case study of accelerating performance. 2nd Workshop on Open-
Source Design Automation (OSDA).

[49] Wilson Snyder. Verilator 4.0: Open simulation goes multithreaded.
The OPen Source Digital Design Conference (ORConf), 2018.

[50] Wilson Snyder. Your Big 4th Simulator: 2019 intro and roadmap. CHIPS
Alliance, 2019.

[51] Zoya Svitkina and Lisa Fleischer. Submodular Approximation:
Sampling-based Algorithms and Lower Bounds. SIAM J. Comput.,
40(6):1715–1737, 2011.

[52] Daniel Sánchez and Christos Kozyrakis. ZSim: fast and accurate mi-
croarchitectural simulation of thousand-core systems. In Proceedings
of the 40th International Symposium on Computer Architecture (ISCA),
pages 475–486, 2013.

[53] Zhangxi Tan, Zhenghao Qian, Xi Chen, Krste Asanovic, and David A.
Patterson. DIABLO: A Warehouse-Scale Computer Network Simula-
tor using FPGAs. In Proceedings of the 20th International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS-XX), pages 207–221, 2015.

[54] Xiang Tian and Khaled Benkrid. Design and implementation of a high
performance financial Monte-Carlo simulation engine on an FPGA
supercomputer. In Tarek A. El-Ghazawi, Yao-Wen Chang, Juinn-Dar
Huang, and Proshanta Saha, editors, 2008 International Conference on
Field-Programmable Technology, FPT 2008, Taipei, Taiwan, December
7-10, 2008, pages 81–88. IEEE, 2008.

[55] Jeffrey D. Ullman. NP-Complete Scheduling Problems. J. Comput. Syst.
Sci., 10(3):384–393, 1975.

[56] Leslie G. Valiant. A BridgingModel for Parallel Computation. Commun.
ACM, 33(8):103–111, 1990.

[57] Sara Vinco, Debapriya Chatterjee, Valeria Bertacco, and Franco Fummi.
SAGA: systemc acceleration on GPU architectures. In Patrick Groen-
eveld, Donatella Sciuto, and Soha Hassoun, editors, The 49th Annual
Design Automation Conference 2012, DAC ’12, San Francisco, CA, USA,
June 3-7, 2012, pages 115–120. ACM, 2012.

[58] Haoyuan Wang and Scott Beamer. RepCut: Superlinear Parallel RTL
Simulation with Replication-Aided Partitioning. In Proceedings of the
28th ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Volume 3, ASPLOS 2023,
page 572–585, New York, NY, USA, 2023. Association for Computing
Machinery.

[59] L.-T. Wang, Nathan E. Hoover, Edwin H. Porter, and John J. Zasio.
SSIM: A software levelized compiled-code simulator. In A. O’Neill
and D. Thomas, editors, Proceedings of the 24th ACM/IEEE Design
Automation Conference. Miami Beach, FL, USA, June 28 - July 1, 1987,
pages 2–8. IEEE Computer Society Press / ACM, 1987.

[60] Zhicheng Wang and Peter M. Maurer. LECSIM: A levelized event
driven compiled logic simulation. In Richard C. Smith, editor, Pro-
ceedings of the 27th ACM/IEEE Design Automation Conference. Orlando,
Florida, USA, June 24-28, 1990, pages 491–496. IEEE Computer Society
Press, 1990.

[61] Seiyang Yang, Jaehoon Han, Doowhan Kwak, Namdo Kim, Daeseo
Cha, Junhyuck Park, and Jay Kim. Predictive parallel event-driven
HDL simulation with a new powerful prediction strategy. In Gerhard P.
Fettweis and Wolfgang Nebel, editors, Design, Automation & Test in
Europe Conference & Exhibition, DATE 2014, Dresden, Germany, March
24-28, 2014, pages 1–3. European Design and Automation Association,
2014.

[62] Jerry Zhao, Animesh Agrawal, Borivoje Nikolic, and Krste Asanović.
Constellation: An open-source SoC-capable NoC generator. In 2022
15th IEEE/ACM International Workshop on Network on Chip Architec-
tures (NoCArc), pages 1–7, 2022.

[63] Jerry Zhao, Ben Korpan, Abraham Gonzalez, and Krste Asanovic. Son-
icBOOM: The 3rd Generation Berkeley Out-of-Order Machine. May
2020.

[64] Kexing Zhou, Yun Liang, Yibo Lin, Runsheng Wang, and Ru Huang.
Khronos: Fusing Memory Access for Improved Hardware RTL Sim-
ulation. In Proceedings of the 56th Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO 2023, Toronto, ON, Canada, 28
October 2023 - 1 November 2023, pages 180–193. ACM, 2023.

[65] Niko Zurstraßen, José Cubero-Cascante, Jan Moritz Joseph, Li Yichao,
Xinghua Xie, and Rainer Leupers. par-gem5: Parallelizing gem5’s
Atomic Mode. In Design, Automation & Test in Europe Conference &
Exhibition, DATE 2023, Antwerp, Belgium, April 17-19, 2023, pages 1–6.
IEEE, 2023.

797

https://www.systemc.org
https://github.com/YosysHQ/picorv32
https://github.com/YosysHQ/picorv32
https://github.com/karlrupp/microprocessor-trend-data
https://github.com/karlrupp/microprocessor-trend-data

	Abstract
	1 Introduction
	2 Graphcore IPU
	3 Parallel RTL Simulation
	3.1 Shared-Memory Simulation
	3.2 BSP RTL Simulation

	4 Analysis of BSP RTL Simulation
	4.1 Synchronization
	4.2 Communication
	4.3 Computation

	5 Parendi Compiler
	5.1 Partitioning
	5.2 IPU-Specific Optimizations
	5.3 Limitations

	6 Evaluation
	6.1 Parendi Vs. Verilator
	6.2 Verilator's Performance
	6.3 Parendi's Performance
	6.4 Cost Comparison
	6.5 Comparison with Other Systems
	6.6 Partitioning Strategies
	6.7 Discussion

	7 Related Work
	7.1 Tens of Cores
	7.2 Hundreds of Cores
	7.3 Thousands of Cores

	8 Conclusion
	9 Acknowledgements
	References

