
A 475 MHz Manycore FPGA Accelerator for RTL Simulation
Sahand Kashani∗

sahand.kashani@epfl.ch
EPFL

Lausanne, Switzerland

Mahyar Emami∗
mahyar.emami@epfl.ch

EPFL
Lausanne, Switzerland

Keisuke Kamahori†
kamahori@uw.edu

University of Washington
Seattle, USA

Sepehr Pourghannad†
spourghannad@student.ethz.ch

ETH
Zurich, Switzerland

Ritik Raj†
ritik.raj@gatech.edu

Georgia Tech
Atlanta, USA

James R. Larus
james.larus@epfl.ch

EPFL
Lausanne, Switzerland

ABSTRACT
This paper presents the implementation of Manticore: a manycore
accelerator for parallel RTL simulation. Manticore packs up to 225
custom soft processors running at 475MHz on a large FPGA.

Implementing manycore accelerators on FPGAs is challenging
as designers must reconcile the conflicting goals of maximizing
the number of cores on the chip and clocking them at the high-
est possible frequency. Designers face two classes of constraints:
(1) architectural constraints imposed by a large FPGA’s multi-die
structure, and (2) physical constraints imposed by the FPGA shell’s
size and placement. Physical design therefore plays a critical role
in the implementation of manycore accelerators.

We present physical design challenges faced during Manticore’s
implementation on the AMDAlveo U200 card—a large FPGA with a
poorly-placed, wide shell that challenges physical implementation.

CCS CONCEPTS
• Hardware → Reconfigurable logic applications; Hardware
description languages and compilation;Partitioning andfloor-
planning; Simulation and emulation.

KEYWORDS
Manycore accelerators, FPGA, physical design, high clock frequency
ACM Reference Format:
Sahand Kashani, Mahyar Emami, Keisuke Kamahori, Sepehr Pourghannad,
Ritik Raj, and James R. Larus. 2024. A 475 MHz Manycore FPGA Accelerator
for RTL Simulation. In Proceedings of the 2024 ACM/SIGDA International
Symposium on Field Programmable Gate Arrays (FPGA ’24), March 3–5, 2024,
Monterey, CA, USA. ACM, New York, NY, USA, 7 pages. https://doi.org/10.
1145/3626202.3637579

1 INTRODUCTION
Manycore architectures are processor arrays with hundreds or
thousands of cores on a single device: they exhibit extensive on-chip

∗Both authors contributed equally to this work.
†Work done during EPFL internship.

This work is licensed under a Creative Commons Attribution
International 4.0 License.

FPGA ’24, March 3–5, 2024, Monterey, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0418-5/24/03.
https://doi.org/10.1145/3626202.3637579

bandwidth and are effective platforms for communication-intensive
parallel workloads. Designers seek to maximize two key features
of these architectures to increase the available on-chip bandwidth:
(1) the number of cores and (2) their clock frequency.

Implementing a manycore accelerator on an FPGA is challenging
as high core counts and high clock frequencies are conflicting goals.
The desire for high core counts pushes implementations onto large
datacenter-grade devices—devices for which high-speed design is
complicated by two factors. First, these devices interface with a
host over a PCIe connection. So, FPGAs are split into two regions:
a shell that interfaces with the host computer and a user-design
region that contains the accelerator logic. Unfortunately, vendor-
provided shells have a large footprint and are immovable: their
placement results in a non-rectangular user-design region, which
makes floorplanning challenging. Second, large FPGAs aremulti-die
devices with multiple “Super Logic Regions” (SLRs) interconnected
via high-delaywires: designs that spanmultiple SLRs require careful
implementation to achieve a high clock frequency.

This paper focuses on the low-level optimizations needed to
implement a high core count and high clock frequency manycore
accelerator on a large FPGA. We do so in the context of Manticore:
an open-source [7, 8] manycore FPGA accelerator purpose-built
for RTL simulation with 225 cores clocked at 475MHz on an AMD
Alveo U200 datacenter accelerator card. We make two main contri-
butions: (1) we describe howwe tailoredManticore’s soft processors
and Network-on-Chip (NoC) to the traits of parallel RTL simula-
tion, and (2) we present an uncommon floorplan to work around
the U200’s multi-die structure and intrusive shell. We provide a
top-down description of Manticore’s design, from requirements to
implementation, and discuss implementation obstacles and their
corresponding physical design optimizations. Manticore’s original
paper [6] provides an extensive application performance analysis.

The rest of this paper is organized as follows: Section 2 briefly
introduces parallel RTL simulation. Section 3 continues with an
overview of Manticore’s design. Section 4 details the microarchi-
tecture of Manticore’s 500MHz core, and Section 5 describes its
NoC. Section 6 explains how to initialize a statically-scheduled
machine. Section 7 presents floorplanning challenges when scaling
Manticore’s design, and our proposed solutions to work around
them. Section 8 evaluates the QoR of Manticore’s physical design.
Section 9 discusses related work. Section 10 concludes.

 

78

https://doi.org/10.1145/3626202.3637579
https://doi.org/10.1145/3626202.3637579
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3626202.3637579
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3626202.3637579&domain=pdf&date_stamp=2024-04-02


FPGA ’24, March 3–5, 2024, Monterey, CA, USA Sahand Kashani et al.

cycle X cycle X+1
computation comm

P1

P2

P3

P4

L2 L1

L3

L4

L5 L6

L2 L1

L3

L4

L5 L6
L6

L3 L4 L5L2
L1

R1 R2 R3 R4 R5

R1 R2 R3 R4 R5

DAGNetlist

L3

L4 L5 L6

L2

L1

R2

R1

R4

R3

R5

Figure 1: Parallel simulation of an RTL netlist with bulk-synchronous parallelism. The input netlist (left) is split at its registers
to form a DAG (center) where inputs and outputs correspond to current (-) and next (+) register values, respectively. Independent
paths (colored vertices) in the DAG can be executed in parallel on a processor array (right).

2 PARALLEL RTL SIMULATION
Hardware description languages represent circuits in the form of a
netlist: a directed graph whose nodes are circuit cells (gates, regis-
ters, memories) and edges are its connecting wires. Figure 1 shows
how to use a bulk-synchronous parallel (BSP [22]) execution model
to evaluate a netlist graph: First, the netlist graph is made acyclic
by splitting the registers into a current and next value (left). This
results in a directed acyclic graph (DAG) where current and next
values are denoted by - and +, respectively (center). Second, the
netlist DAG is evaluated in data dependence order. A simulated cy-
cle concludes after computing all next register values from current
ones. The current values are then updated and the process repeats.
A compiler partitions the netlist DAG so independent paths run in
parallel on a processor array (right).

Netlist DAGs are very wide and have far more parallelism than
the number of cores in general-purposemulticore processors, which
motivates using a manycore accelerator for parallel RTL simulation.

3 OVERVIEW
Manticore consists of an array of highly customized cores linked
by an interconnect. The top part of Figure 2 shows the physical lay-
out of the U200 FPGA. This FPGA contains three identically-sized
SLRs, each containing a grid of clock regions, and is split into a
shell (orange) and a user-design region (black). The U200 contains
four DRAM banks. Interfacing with a bank requires instantiating a
memory controller: an IP with a large footprint that we expect to
complicate clocking a dense arrangement of cores at high frequen-
cies. On-chip bandwidth is more critical than off-chip bandwidth
for parallel RTL simulation; hence, we restrict ourselves to a single
DRAM bank (blue, contained in the shell). This entirely reserves the
user-design region for cores, NoC switches, and control structures.

The bottom part of Figure 2 shows an overview of Manticore’s
design for a small 4-core instance. Manticore is a message-passing
machine: cores can access only their private instruction/data mem-
ories and explicitly exchange messages to communicate (no shared
memory). All cores are identical, apart from one privileged core
(black), which can access a 16GiBDRAM through a 256 KiB on-chip
cache. Each core stores a partition of the netlist DAG in a private,
fixed-latency on-chip instruction memory and sends its computed
next register values to the consuming cores at the end of each sim-
ulation cycle (see Figure 1). The fixed structure of netlist DAGs
allows Manticore to statically schedule computation and communi-
cation globally. This allows us to remove interlocks and forwarding
paths from cores and remove buffering from the NoC. The cores are

simple feed-forward pipelines that cannot dynamically stall and are
easy to implement at high clock frequencies. Statically scheduling
the cores and the NoC is possible because they are built out of
fixed-latency components. However, DRAM has non-deterministic
latency and is incompatible with static scheduling without making
worst-case assumptions about memory latency. Therefore, we sep-
arate the user-design region into a compute domain containing all
cores and the NoC and a control domain containing control circuitry.
Logic in the control clock domain gates the compute clock when
a non-deterministic latency operation starts and resumes it upon
completion. Hence, from the compiler’s point of view, off-chip and
on-chip memory accesses have a fixed latency.

4 CORE DESIGN
Designing a core with the fewest stages for a target clock frequency
is best. Since FPGA primitives (BRAMs, URAMs, and DSPs) are
placed unevenly across FPGA columns, we could minimize each
core’s pipeline depth based on its placement. However, such a design

C

C

S

C

C

S S

S cache
256 KiB

FPGA
DRAM
bank 1

16 GiB

controller

compute clock control clock

P
C

Ie
m

em
o

ry
co

nt
ro

lle
r

FPGA user-design shell

CSR

1

bootloader

runtime
(SW)

Host

x86

MMCM

shell clk
(300 MHz)

SLR0 SLR1 SLR2

Shell

DRAM bank 0 pins DRAM bank 2 pins

DRAM bank 3 pins

clock regions

DRAM bank 1 pins

X2Y10X2Y7

Figure 2: U200 FPGA layout (top) and high-level diagram of
Manticore (bottom). All cores (C) and switches (S) are in the
compute clock domain. A privileged core (black) accesses
DRAM through a cache (in the control clock domain). Opera-
tions with non-deterministic latency gate the compute clock.

 

79



A 475 MHz Manycore FPGA Accelerator for RTL Simulation FPGA ’24, March 3–5, 2024, Monterey, CA, USA

Reg. File
4x BRAM

WDATA
WADDR

RDATARADDR

RS1

WDATA
WADDR

RDATARADDR

RS2

WDATA
WADDR

RDATARADDR

RS3

WDATA
WADDR

RDATARADDR

RS4

NoC in

ALU
1x DSP

RES
CIN
Y
X

FUNCT

CFU

RESRS3
RS2
RS1

RS4
FUNCT

32x256
LUTRAM

gMem 
Interface

RDATA
WADDR
RADDR

WDATA

dMem
1x URAM

RDATA
WADDR
RADDR

WDATA

NoC out

Encode Instr

SET R12, 42
SET R182, 23

1611

R182
R12

23
42

iMem
1x URAM

RDATA
WADDR
RADDR

WDATA

F D E M W

new
latency

existing
latency pipeline

regs
dynamic

cycle

NoC out

Figure 3: Microarchitecture of the privileged core. The green
pipeline registers are enhancements necessary for improved
floorplanning and will be presented in Section 7.

would complicate the compiler’s task in scheduling. Therefore, we
opted for a more regular—and very deep—pipeline that maximizes
the clock speed in a worst-case scenario.

Figure 3 shows a block diagram of the privileged core: it consists
of the usual five-stage pipeline, but each stage is further pipelined
for more place-and-route (P&R) slack. We use all built-in hard
registers of the FPGA primitives (BRAMs, URAMs, and DSPs) and
complete with fabric registers if needed. This additional pipelining
enables individual cores to run at 500MHz. Although the pipeline
is 14 stages deep, the compiler can fill the pipeline slots due to the
abundant instruction-level parallelism in netlist DAGs.

Instructions are fetched from a large 4096 × 64 URAM memory
(8× larger than a BRAM). Instructions are 64 bits wide; most of this
space is used to index the large register file.

Typically, soft processors have small 32-entry register files. How-
ever, Manticore’s cores use a large BRAM configured in a 2048 × 17
structure. The 16 lower bits of each entry contain data, and the 17th
bit is an overflow bit to simulate carry chains efficiently. The large
register file virtually removes register spilling and is optimized for
long-reuse distances in RTL simulation. Instructions read up to four
registers per cycle using four write-replicated BRAMs (1W4R).

The execute stage contains a standard ALU and a custom func-
tion unit (CFU). The ALU is built from a single DSP configured in
“dynamic” mode to support multiplication and other functionality
at runtime. We match the processor’s datapath width to the native
width of the DSP primitive (16 bits) for simplicity. The CFU im-
plements 32 four-input bitwise-parallel logic functions, which the
compiler extracts from the netlist DAGs. The CFU uses a shallow
32 × 256 memory built from LUTRAMs to store logic equations.

RTLmemories are stored in each core’s local URAMdatamemory.
Local loads execute unconditionally, but local stores are predicated.
The global memory interface exists in only the privileged core.
Global loads or stores are predicated and privileged: they access
off-chip DRAM using a 48-bit address concatenated from three reg-
isters and are used for very large RTL arrays. Local/global memory
accesses and outgoing NoC messages are indistinguishable to the

compiler as they all occur in the same pipeline stage. We describe
the “dynamic cycle” signal in Section 7.1.

5 NOC DESIGN
The NoC is implemented as a 16-bit uni-directional 2D torus with
buffer-less switching and dimension-ordered routing: its switches
contain only pipeline registers and muxes for a minimal area foot-
print. It is inspired by the Hoplite NoC [16]. However, Manticore’s
NoC does not use deflection routing since the NoC is statically
scheduled with the cores to avoid runtime contention: switches
drop messages if the target link is busy since contention is erro-
neous behavior.

The left side of Figure 4 depicts a standard uni-directional torus
in which wrap-around links (left, bold) have much higher delay
than inner links: they need additional pipelining to achieve high
clock frequencies [10]. Manticore’s NoC instead uses a folded torus
so all links have approximately equal length (right side of Figure 4).
Having a uniform NoC simplifies the compiler’s scheduler.

Overlapping computation and communication improves simula-
tion performance, but requires extra memory to queue messages
at the receiver core. To save memory, we use each core’s instruc-
tion memory and its unused write port (after boot) as this ingress
queue: incoming register updates are encoded into a set-immediate
instruction and appended to the end of the instruction memory (see
Figure 3); the core then executes it like any other instruction when
its program counter reaches it.

6 BOOTLOADING
We briefly describe how to initialize a machine with a statically
scheduled NoC. Figure 5 shows the NoC ingress path, which is used
as part of each core’s bootloading process before simulation starts
(red), and for register updates during program execution (blue).

The bootloader starts with a soft reset that brings all cores into a
“dynamic” state: they snoop the NoC for instructions and pushNOPs
through their pipelines. The bootloader then reads the program
binary from FPGADRAM through the cache and injects its contents
into the NoC at the privileged core’s NoC switch (see Figure 2).
The program binary contains multiple fields, which a finite state
machine (FSM) in each core intercepts and uses to configure the
processor. The first field denotes the total number of instructions
that the core will receive. Each instruction is received as four 16-bit
chunks, which the FSM assembles into a single 64-bit instruction
and writes to the instruction memory. Once all instructions are

x3y1

x3y2

x3y3

x3y0

x2y1

x2y2

x2y3

x2y0

x1y1

x1y2

x1y3

x1y0x0y0

x0y1

x0y2

x0y3

x2y0

x1y1 x3y1 x2y1

x1y3 x3y3 x2y3

x1y2 x3y2 x2y2

x3y0x1y0x0y0

x0y1

x0y3

x0y2

Figure 4: Unfolded vs folded torus layout.

 

80



FPGA ’24, March 3–5, 2024, Monterey, CA, USA Sahand Kashani et al.

64

64

Concatenate
Instr[x][15..00]
Instr[x][31..16]
Instr[x][47..32]
Instr[x][63..48]

FSMbootloader

cache

16

16

16

256

binary
num instructions

...
epilogue length

sleep length
count down

Instr[x][15..00]
Instr[0][31..16]

Instr[0][47..32]
Instr[0][63..48]

BOOT
(dynamic)

EXECUTE
(static)

recv. sleep
length

recv. epilogue 
length

recv.
countdown

count down
to start

soft reset
(from bootloader)

soft
reset

SLEEP

recv.
instructions

ACTIVE recv. num.
instructions

FSM DRAM

Encode Instr

SET R12, 42
SET R182, 23

1611

R182
R12

23
42

NoC in

iMem
RDATA

WADDR
RADDR

WDATA

Figure 5: Core NoC ingress behavior at boot and execution.

received, the FSM then receives three counters. The first counter is
the epilogue length, which is the number of messages the core is
expected to receive from other cores during program execution. The
second counter is the sleep length and corresponds to the number
of clock cycles each core must sleep after the computation phase.
The final counter is a per-core countdown timer that is necessary to
start all cores at the same time such that they execute the program in
strict lock-step. The deterministic execution of the NoC allows these
messages to arrive at exactly the right time. Each core counts down
and starts “static” program execution once this counter reaches 0.

7 FLOORPLANNING
Floorplanning has a large effect on quality-of-results (QoR) [13]. It is
performed using constraints, which in Vivado are defined through a
PBlock or a resource-specific constraint. We first describe the neces-
sary constraints for Manticore’s implementation on any FPGA. We
continue by analyzing Vivado’s P&R performance without device-
specific constraints to understand the architectural challenges in
the U200’s design. We then study how a regular, grid-structured
floorplan performs. Finally, we present a minor modification to the
core presented in Section 4 which, when combined with multiple
design optimizations, leads to an unconventional floorplan with
better 𝑓𝑚𝑎𝑥 on large Manticore configurations.

Our general approach during floorplanning is that it is imprac-
tical to manually place individual cells in the design. We instead
generate Tcl scripts that constrain the design using information
about the target FPGA. Manticore is developed in Chisel [5], a DSL
for hardware generators embedded in the Scala programming lan-
guage. Manticore’s hardware generator is therefore aware of cores’
names and those of their internal structures. We add a generic Scala
floorplanning class after Chisel’s final Verilog emission point, which
we then subclass to implement various floorplanning strategies.

7.1 Generic Constraints
Manticore relies on clock gating to enable static scheduling. The
privileged core emits a “dynamic cycle” signal early in its pipeline
before an operation with non-deterministic latency’s effect becomes
apparent (see memory stage in Figure 3). This signal exits the core
and travels to the controller and to the cache in the control clock
domain (see Figure 2), where the controller then decides whether to
gate the clock on the next cycle. The privileged core, controller, and
cache must be close to each other for this operation to pass timing

at 500MHz. We therefore create a PBlock constraint to co-locate
them in the same clock region as the clock buffer.

The clock generator and its control path are carefully designed
to permit scalability. The compute and control clock buffers are cas-
caded and are sourced from the same clock generator (theMMCM in
Figure 2), which we configure to generate two frequency-matched
and phase-aligned signals using a source clock from the shell. Some
skew is inevitable between the compute and control clock domains,
and so it should be carefully controlled. Vivado typically routes
each clock to the “clock root” before fanning it out to all sinks. The
clock root is located in the clock region at the center of the bound-
ing box that contains all logic driven by the clock. This introduces
a large skew between the compute and the control clocks for large
core arrays as the control clock is local to a small part of the circuit
close to the shell, whereas the bounding box of the compute clock
spans across the entire FPGA. To avoid this, we manually choose
nearby clock regions as clock roots for the clocks.

7.2 Automatic Floorplanning
Figure 6 reports Vivado’s P&R performance without device-specific
constraints. Designs up to 12 × 12 cores run near 500MHz. Perfor-
mance decreases sharply past this point as 15 × 15 designs run at
395MHz, and 16 × 16 designs drop to 180MHz. This decrease is
explained by (1) the shell’s placement and (2) the increased wire
delay due to SLR crossings: With fewer than 160 cores (maximum
capacity of one SLR, limited by its URAM capacity), Vivado fits
Manticore entirely in SLR2, unperturbed by the shell, and finds a
high-quality folded torus floorplan automatically. Beyond 160 cores,
the design is forced to spread around the shell. Vivado cannot find
a good floorplan for a rectangular core array in a non-rectangular
user-design region, making timing closure difficult.

7.3 Guided Floorplanning
7.3.1 Regular Grid Floorplan. Given Manticore’s regular design, it
is natural to believe that a grid-structured floorplan would produce
the densest and highest-speed implementation. Since Vivado cannot
find a high-quality, non-rectangular implementation itself, we must

16x16
180 MHz

15x15
395 MHz

12x12
480 MHz

Control
NoC
Cores

Figure 6: Automatic floorplan QoR.

 

81



A 475 MHz Manycore FPGA Accelerator for RTL Simulation FPGA ’24, March 3–5, 2024, Monterey, CA, USA

Pblocks
URAMs

Privileged core
Clock gate

Figure 7: Grid floorplan of a 25 × 10 Manticore accelerator
(top). PBlocks (white) contain either 5 cores (green) in SLR1
or 10 cores in SLR0/SLR2. Each color in the implementation
(bottom) represents a core.

guide it with PBlocks. We do not place individual cores to avoid
over-constraining the design. We instead create 30 PBlocks that
are large enough to contain 5–10 cores each depending on the SLR
in which they are located, and let Vivado handle the rest. Figure 7
shows this floorplan (top) and its implementation (bottom).

While the design is regular, cores cluster around the center
columns of the device despite the PBlocks spanning the entire
width of each SLR. The reason is that URAMs, which all cores
use, exist in only the center of the FPGA. Manticore’s cores and
switches—though regularly placed—are tightly packed in SLR1 and
timing closes at 400MHz due to congestion.

Besides congestion in SLR1, there is the issue of increased wiring
delay for SLR crossings. UltraScale+ devices contain pairs of special
hard registers (LAGUNA registers) to cross SLR boundaries at high
clock frequencies (400+ MHz). Each TX-RX path between LAGUNA
registers is a direct link between two registers, so the user design
must have two back-to-back registers to be able to leverage them.
However, links betweenManticore’s switches are one hop from each
other and are incompatible with LAGUNA registers. One solution
would be to pipeline the links between switches such that each
contains at least two registers. However, this doubles the latency
of all NoC traffic and degrades application performance.

7.3.2 Split Core-Switch Floorplan. A minor change to Manticore’s
design yields higher-performing implementations using only five
PBlocks, and without changing the latency of switch hops.

The key idea is that switches must be close to each other in a
folded torus arrangement, but cores do not: links between NoC
switches cannot cross an SLR boundary at high clock frequencies,
and so all switches should be placed in a single SLR.We reserve SLR1
for this purpose: since switches use only CLB resources (which are
abundant), they will not cluster around the URAM columns, freeing
up the cramped space around the shell and enabling short con-
nections to neighboring switches. We then partition cores equally
between SLR0 and SLR2. One exception is the privileged core, which
we leave in SLR1 as it must be close to the MMCM and controller.
Our five PBlocks therefore are: (1) SLR0 for half of the cores, (2) SLR2

for the other half of the cores, (3) SLR1 for all switches and the priv-
ileged core, (4) clock region X2Y7 for the clock root, and (5) clock
region X1Y7 for the privileged core, cache, and controller. Figure 8
gives a high-level view of this split core-switch floorplan.

Implementing this floorplan requires separating a core’s place-
ment from that of its NoC switch. The green registers in Figure 3
show how we modify each core. We pull a core’s NoC egress path
as early as possible in its pipeline (in the execute stage). We then
push the 7 pipeline registers that were previously inside the core to
be outside it. An outgoing NoC packet now has 7 cycles of latency
to traverse SLR0/SLR2 to SLR1 and reach its switch. This modifica-
tion is invisible to the compiler as we have simply moved existing
registers around. The NoC ingress path also must be pipelined. This
introduces new registers, and so the compiler’s scheduler must be
modified to account for the extra 7 cycles of latency.

Notice that cores and switches are only loosely-constrained, i.e.,
assigned to PBlocks that span entire SLRs. Vivado automatically
finds a high-quality torus floorplan for switches. As for the cores,
it spreads them arbitrarily in SLR0 and SLR2 as 7 cycles are more
than sufficient to reach the switches in SLR1, irrespective of their
placement in SLR0/SLR2.We now present additional design changes
needed to get the most out of the split floorplan described above.

Shift register inference. Vivado—by default—transforms back-to-
back registers into shift registers to improve density. This is ben-
eficial inside a core, but hurts performance outside on the newly-
pipelined core↔switch paths: a shift register is contained in a single
LUTRAM instead of being a physical chain of registers, and so cores
cannot be physically far from their switches. Shift register inference
is done early during synthesis, and so we had to explicitly instruct
Vivado not to infer shift registers on the core↔switch paths.

SLR crossings. Since core↔switch paths are now pipelined with
7 registers, there exists a pair of back-to-back registers which we
can map to LAGUNA tiles in opposing SLRs. By default Vivado does
not automatically map registers to LAGUNA cells: candidate regis-
ters must be marked with a USER_SLL_REG hint to be considered.
However, we found that simply marking candidate registers with
this hint was insufficient for Vivado to map them to LAGUNA reg-
isters: we had to explicitly constrain registers 1–4 to SLR0 or SLR2

C CS SLAGUNA LAGUNA

Privileged core

Clock gate

Figure 8: Split core-switch floorplan. We split cores (C)
equally between SLR0 (green) and SLR2 (blue), but leave the
privileged core in SLR1. All switches (S) are pinned to SLR1.
Core ↔ switch links are pipelined with 7 cycles of latency.
We map one pair of adjacent registers from these pipelined
links to LAGUNA registers for efficient SLR crossing.

 

82



FPGA ’24, March 3–5, 2024, Monterey, CA, USA Sahand Kashani et al.

and registers 5–7 to SLR1. Once further constrained, Vivado was
then able to map them to the hard LAGUNA registers, as intended.

Reset trees. The host can reset cores through the controller. The
high fanout reset logic requires extra care not to limit clock speed.
The controller drives two, 3-stage pipelined wires from SLR1 to
SLR0/SLR2, appropriately marked to be mapped to LAGUNA regis-
ters. Once in SLR0/SLR2, a radix-4 tree propagates the reset signal
to all cores. We disable shift register inference to preserve the
intended tree structure. Switches do not have a reset signal: To
preserve correctness, the controller keeps the reset signal active for
a design-size-specific number of cycles. Cores that are under reset
emit empty messages to the NoC, eventually clearing all NoC state.

Relative placement of memories. We often encountered situa-
tions where timing failed due to Vivado placing logically-related
BRAMs/URAMs at a distance from each other. For example, the
four BRAMs that make up a core’s register file would occasionally
be placed in different BRAM columns, which are far apart. Similarly,
the four URAMs that compose the 256 KiB cache would be placed in
different URAM columns, significantly degrading timing. We work
around this issue by using relatively-placed macros for all register
files and the cache. The resulting implementation yields more con-
sistent P&R results, making it easier to reason about the influence
of incremental design changes on Manticore’s clock frequency.

8 EVALUATION
We evaluated Manticore configurations with Vivado 2022.1 and
used multiple implementation strategies for each design to improve
timing closure. We use the default implementation strategy along-
side the “Performance_NetDelay_High” one, which we found some-
times more aggressively works around the unavoidable (though
reduced) clock skew between the compute and control clocks.

Figure 9 summarizes our proposed split core-switch floorplan’s
QoR for increasing Manticore configurations. Manticore’s 𝑓𝑚𝑎𝑥 is
consistently above 450MHz, even in a 16 × 16 instance (up from
180MHz without optimizations). Clock skew is a large source of
QoR variability and results in larger instances occasionally achiev-
ing higher 𝑓𝑚𝑎𝑥 than smaller ones (e.g., 12 × 12 and 9 × 9). Design
effort increases considerably at high clock speeds: more detailed
floorplanning would likely bring performance up to 500MHz.

Manticore is a memory-heavy design: breaking down per-SLR
resource utilization reveals up to ≈ 80% (75%) URAM (BRAM) uti-
lization in SLR0/SLR2 for a 16×16 design.We also report the fraction
of total “Super Long Lines” (SLLs) used to cross SLR boundaries.
SLLs are a new limiting resource (≥ 67% utilization in SLR2) in our
proposed floorplan as all cores’ NoC datapaths converge towards
their switches in SLR1. Our choice of leaving SLR1 free of cores
sacrifices design capacity in exchange for high clock frequencies.

Figure 10 shows the floorplan of our highest-performing large
Manticore implementation (15 × 15, 475MHz).

9 RELATED WORK
Prior work presented a new type of coarse-grained FPGA and its
corresponding CAD flow for RTL emulation [9]. Manticore is not
an FPGA: it is an array of processors and is programmed entirely
with software (there is no FPGA P&R algorithm or a “bitstream”).

4x
4

5x
5

6x
6

7x
7

8x
8

9x
9
10
x1
0
11
x1
1
12
x1
2
13
x1
3
14
x1
4
15
x1
5
16
x1
6

Design configuration

450

475

500

FM
ax
 (
MH
z)

4x4 16x160.00
0.25
0.50
0.75
1.00

Us
ag
e

SLR0

4x4 16x16

SLR1

4x4 16x16

SLR2

LUT REG DSP BRAM URAM SLL

Figure 9: Split core-switch floorplan QoR analysis. We break
down resource utilization per-SLR. SLR1 utilization includes
shell resources.

ControlNoCCores

15x15
475 MHz

Figure 10: Split core-switch floorplan P&R results.

Most recent work on manycore accelerators for FPGAs tar-
get RISC-V processors. These works are either manycore frame-
works [14, 15, 17, 18, 23] or optimizedmanycore implementations [1–
4, 10–12, 19–21]. The frameworks provide customizable overlays
to create homogeneous processor arrays (or heterogenous arrays
of processors and accelerators) and demonstrate new architectural
ideas. They propose systems clocked between 20–120 MHz and do
not focus on low-level implementation details as it is not their goal.
The specialized systems achieve higher-clocked implementations
(94–300 MHz) or demonstrate more efficient use of scarce FPGA
resources (e.g., SLLs in multi-die FPGAs). While they explain some
physical implementation details, explaining low-level details is not
their goal as they too must focus on the application of their accel-
erator. Manticore does not use general-purpose RISC-V processors:
its architecture is tailored to the characteristics of RTL simulation
and its physical implementation is optimized for the U200 FPGA.

10 CONCLUSION
We described the design and implementation ofManticore: an FPGA
accelerator for parallel RTL simulation. Manticore packs 225 cores
clocked at 475MHz on a large datacenter FPGA. We presented
Manticore with an emphasis on physical design obstacles incurred
when implementing manycore accelerators on multi-die FPGAs
with imposing shells. Manticore’s unconventional split core-switch
floorplan contrasts with traditional regular grid floorplans used in
devices with less obstructive shells and allows us to achieve both a
high core-count and high frequency implementation.

 

83



A 475 MHz Manycore FPGA Accelerator for RTL Simulation FPGA ’24, March 3–5, 2024, Monterey, CA, USA

REFERENCES
[1] Riadh Ben Abdelhamid and Yoshiki Yamaguchi. 2022. Packed SIMD Vectorization

of the DRAGON2-CB. In Proceedings of the 15th IEEE Internation Symposium on
Embedded Multicore/Many-core Systems-on-Chip (MCSoC-2022). Penang, Malaysia,
85–92. https://doi.org/10.1109/MCSoC57363.2022.00023

[2] Riadh Ben Abdelhamid, Yoshiki Yamaguchi, and Taisuke Boku. 2021. A Highly-
Efficient and Tightly-Connected Many-Core Overlay Architecture. IEEE Access 9
(4 2021), 65277–65292. https://doi.org/10.1109/ACCESS.2021.3074171

[3] Riadh Ben Abdelhamid, Yoshiki Yamaguchi, and Taisuke Boku. 2023. A Scalable
Many-core Overlay Architecture on an HBM2-enabled Multi-Die FPGA. ACM
Transactions on Reconfigurable Technology and Systems (TRETS) 16, 1 (1 2023),
15:1–15:33. https://doi.org/10.1145/3547657

[4] Chethan Kumar H. B, Prashant Ravi, GouravModi, and Nachiket Kapre. 2017. 120-
core microAptiv MIPS Overlay for the Terasic DE5-NET FPGA board. In Proceed-
ings of the 25th ACM/SIGDA International Symposium on Field Programmable Gate
Arrays. Monterey, CA, USA, 141–146. https://doi.org/10.1145/3020078.3021751

[5] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman,
Rimas Avižienis, John Wawrzynek, and Krste Asanović. 2012. Chisel: Con-
structing Hardware in a Scala Embedded Language. In Proceedings of the 49th
Design Automation Conference. San Francisco, California, 1216––1225. https:
//doi.org/10.1145/2228360.2228584

[6] Mahyar Emami, Sahand Kashani, Keisuke Kamahori, Mohammad Sepehr
Pourghannad, Ritik Raj, and James R. Larus. 2023. Manticore: Hardare-
Accelerated RTL Simulation with Static Bulk-Synchronous Parallelism. In Pro-
ceedings of the 28th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems. Vancouver, BC, CA, 219–237.
https://doi.org/10.1145/3623278.3624750

[7] Mahyar Emami, Sahand Kashani, Keisuke Kamahori, Mohammad Sepehr
Pourghannad, Ritik Raj, and James R. Larus. 2023. Manticore parallel RTL simu-
lator. https://github.com/ManticoreRTL.

[8] Mahyar Emami, Sahand Kashani, Keisuke Kamahori, Mohammad Sepehr
Pourghannad, Ritik Raj, and James R. Larus. 2023. Manticore parallel RTL simu-
lator (artifact). https://zenodo.org/doi/10.5281/zenodo.10363279.

[9] David Grant, Chris C. Wang, and Guy G. Lemieux. 2011. A CAD framework for
Malibu: an FPGA with time-multiplexed coarse-grained elements. In Proceedings
of the 19th ACM/SIGDA International Symposium on Field Programmable Gate
Arrays. Monterey, CA, USA, 123–132. https://doi.org/10.1145/1950413.1950441

[10] Jan Gray. 2016. GRVI Phalanx: A Massively Parallel RISC-V FPGA Accelerator.
In Proceedings of the 24th IEEE International Symposium on Field-Programmable
Custom Computing Machines. Washington DC, USA, 17–20. https://doi.org/10.
1109/FCCM.2016.12

[11] Jan Gray. 2017. GRVI Phalanx: A Massively Parallel RISC-V FPGA Accelerator
Framework; A 1680-core, 26 MB SRAM Parallel Processor Overlay on Xilinx
UltraScale+ VU9P. In First Workshop on Computer Architecture Research with RISC-
V (CARRV 2017). Boston, MA, USA. https://carrv.github.io/2017/papers/gray-
phalanx-carrv2017.pdf

[12] Jan Gray. 2019. 2GRVI Phalanx: A 1332-Core RISC-V RV64I Processor Cluster
Array with an HBM2 High Bandwidth Memory System, and an OpenCL-like
Programming Model, in a Xilinx VU37P FPGA [WIP Report]. In Fifth Interna-
tional Workshop on Heterogeneous High-performance Reconfigurable Computing
(H2RC’19). Denver, CO, USA. https://h2rc.cse.sc.edu/2019/papers/lightning_2_1_
Gray.pdf

[13] Licheng Guo, Yuze Chi, Jie Wang, Jason Lau, Weikang Qiao, Ecenur Ustun,
Zhiru Zhang, and Jason Cong. 2021. AutoBridge: Coupling Coarse-Grained
Floorplanning and Pipelining for High-Frequency HLS Design on Multi-Die
FPGAs. In Proceedings of the 29th ACM/SIGDA International Symposium on Field
Programmable Gate Arrays. Virtual Event, 81–92. https://doi.org/10.1145/3431920.
3439289

[14] Ahmed Kamaleldin and Diana Göhringer. 2022. AGILER: An Adaptive Heteroge-
neous Tile-Based Many-Core Architecture for RISC-V Processors. IEEE Access 10
(4 2022), 43895–43913. https://doi.org/10.1109/ACCESS.2022.3168686

[15] Ahmed Kamaleldin, Salma Hesham, and Diana Göhringer. 2020. Towards a
Modular RISC-V Based Many-Core Architecture for FPGA Accelerators. IEEE
Access 8 (8 2020), 148812–148826. https://doi.org/10.1109/ACCESS.2020.3015706

[16] Nachiket Kapre and Jan Gray. 2017. Hoplite: A Deflection-Routed Directional
Torus NoC for FPGAs. ACM Transactions on Reconfigurable Technology and
Systems (TRETS) 10, 2 (3 2017), 14:1–14:24. https://doi.org/10.1145/3027486

[17] Andreas Kurth, Björn Forsberg, and Luca Benini. 2022. HEROv2: Full-Stack Open-
Source Research Platform for Heterogeneous Computing. IEEE Transactions on
Parallel and Distributed Systems 33, 10 (12 2022), 4368–4382. https://doi.org/10.
1109/TPDS.2022.3189390

[18] Andreas Kurth, Pirmin Vogel, Alessandro Capotondi, Andrea Marongiu, and
Luca Benini. 2017. HERO: Heterogeneous Embedded Research Platform for
Exploring RISC-V Manycore Accelerators on FPGA. arXiv (12 2017). https:
//doi.org/10.48550/arXiv.1712.06497

[19] Haruka Mori and Kenji Kise. 2014. Design and Performance Evaluation of a
Manycore Processor for Large FPGA. In Proceedings of the 7th IEEE Internation
Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC-2014).
Aizu-Wakamatsu, Japan, 207–214. https://doi.org/10.1109/MCSoC.2014.37

[20] Matthew Naylor, Simon W. Moore, and David B. Thomas. 2019. Tinsel: A
Manythread Overlay for FPGA Clusters. In Proceedings of the 29th International
Conference on Field Programmable Logic and Applications. Barcelona, Spain, 375–
383. https://doi.org/10.1109/FPL.2019.00066

[21] Blaise Tine, Varun Saxena, Santosh Srivatsan, Joshua R. Simpson, Fadi Alzammar,
Liam Cooper, and Hyesoon Kim. 2023. Skybox: Open-Source Graphic Rendering
on Programmable RISC-V GPUs. In Proceedings of the 28th International Confer-
ence on Architectural Support for Programming Languages and Operating Systems.
Vancouver, BC, Canada, 616–630. https://doi.org/10.1145/3582016.3582024

[22] Leslie G. Valiant. 1990. A Bridging Model for Parallel Computation. Commun.
ACM 33, 8 (8 1990), 103–111. https://doi.org/10.1145/79173.79181

[23] Joseph Zuckerman, Paolo Mantovani, Davide Giri, and Luca P. Carloni. 2022.
Enabling Heterogeneous, Multicore SoC Research with RISC-V and ESP. arXiv
(6 2022). https://doi.org/10.48550/arXiv.2206.01901

 

84

https://doi.org/10.1109/MCSoC57363.2022.00023
https://doi.org/10.1109/ACCESS.2021.3074171
https://doi.org/10.1145/3547657
https://doi.org/10.1145/3020078.3021751
https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1145/3623278.3624750
https://github.com/ManticoreRTL
https://zenodo.org/doi/10.5281/zenodo.10363279
https://doi.org/10.1145/1950413.1950441
https://doi.org/10.1109/FCCM.2016.12
https://doi.org/10.1109/FCCM.2016.12
https://carrv.github.io/2017/papers/gray-phalanx-carrv2017.pdf
https://carrv.github.io/2017/papers/gray-phalanx-carrv2017.pdf
https://h2rc.cse.sc.edu/2019/papers/lightning_2_1_Gray.pdf
https://h2rc.cse.sc.edu/2019/papers/lightning_2_1_Gray.pdf
https://doi.org/10.1145/3431920.3439289
https://doi.org/10.1145/3431920.3439289
https://doi.org/10.1109/ACCESS.2022.3168686
https://doi.org/10.1109/ACCESS.2020.3015706
https://doi.org/10.1145/3027486
https://doi.org/10.1109/TPDS.2022.3189390
https://doi.org/10.1109/TPDS.2022.3189390
https://doi.org/10.48550/arXiv.1712.06497
https://doi.org/10.48550/arXiv.1712.06497
https://doi.org/10.1109/MCSoC.2014.37
https://doi.org/10.1109/FPL.2019.00066
https://doi.org/10.1145/3582016.3582024
https://doi.org/10.1145/79173.79181
https://doi.org/10.48550/arXiv.2206.01901

	Abstract
	1 Introduction
	2 Parallel RTL Simulation
	3 Overview
	4 Core Design
	5 NoC Design
	6 Bootloading
	7 Floorplanning
	7.1 Generic Constraints
	7.2 Automatic Floorplanning
	7.3 Guided Floorplanning

	8 Evaluation
	9 Related Work
	10 Conclusion
	References



