
Manticore
Hardware-Accelerated RTL Simulation with

Static Bulk-Synchronous Parallelism

Mahyar Emami, Sahand Kashani, Keisuke Kamahori, Sepehr
Pourghannad, Ritik Raj, and James R. Larus

Mahyar Emami © 2024

RTL Simulation

● Register Transfer Level (RTL) simulation is at the heart of functional

verification in accelerator design

● Big problem ⇒ RTL simulation is slow

○ Simulating 1 second of a design could take a week!

○ Increasingly important issue:

■ More and more accelerators are being built today

■ Chips are becoming larger and larger

2

Research Question:

Can we leverage the inherent parallelism of RTL to
speed up its simulation to hundreds of cores?

Background

3

Mahyar Emami

What is RTL?

4

Digital circuits are described in

hardware description languages like

Verilog and VHDL at the Register

Transfer Level (RTL) abstraction

● Stateful registers / memories

● Stateless logic in between

Register (stateful)
Logic (stateless)

Netlist

Mahyar Emami © 2024

Cycle-accurate simulation

5

Register (stateful)
Logic (stateless)

● How to simulate?
○ Split registers

■ current and next value
○ At each cycle

■ Compute next register values
■ Overwrite current register values
■ Repeat

currentnext

Mahyar Emami © 2024

Bulk-synchronous parallel simulation

6

Computation phase
● Each processor computes its program

partition independently
● Synchronize processors

Communication phase
● Producers send their values to

consumers
● Synchronize processors

RTL simulation lends itself well to BSP

Bounding software
simulation speed

7

Mahyar Emami © 2024

Parallel Simulation is Doomed on x86!

● Simulation rate on shared-memory general purpose machines

8

Simulation
rate

Cost of barrier

cores Host clock speed

Work per core

See paper for an experimental demonstration!

Mahyar Emami © 2024

Taming Synchronization Cost

9

Simulation
rate

Cost of barrier

cores Host clock speed

Work per core

We don’t really need a barrier if we could
schedule all operations at compile-time!

Manticore
Architecture

10

Mahyar Emami © 2024

Key idea

● Problem
○ Runtime overhead of synchronization

○ Limits scaling to tens of cores

● Goal
○ Scale simulation to hundreds or thousands of cores

● Solution
○ Eliminate runtime synchronization

○ Statically schedule all cores

○ Requires a machine with deterministic behavior

11

Mahyar Emami © 2024

Manticore architecture: 10,000-foot view

12

● Static BSP ⇒ native message passing

● Lock-step execution (cores + NoC)

○ local memories

○ predication

● Global stall for non-deterministic

events

○ See paper for more

Mahyar Emami © 2024

Static BSP execution with Manticore

13

Lock-step execution
● Same PC on all cores

Message-passing:
● Mixed computation and

communication
● Delayed updates

Compile-time arrive-await
barrier
● “NOP” until straggler is

done
● No runtime

synchronization

See paper for µarch details!

Compile-time
barrier

Mahyar Emami © 2024

From RTL to parallel execution

14

Compiler

Manticore’s hardware relies entirely on its
compiler for:
● Parallelizing the netlist
● Scheduling instructions (data hazards)
● Scheduling messages (message delivery)

Evaluation

15

Mahyar Emami © 2024

Hardware setup

16

Verilator v5.006 (Feb 2023) Manticore

Hardware AMD EPYC 7V73X Intel Core i7 9700K
Prototyped on Xilinx Alveo
U200

cores 120 (dual socket) 8 225

Freq. GHz 3.0–3.5 4.6–4.9 (overclocked) 0.475

SRAM (MiB) 259.6 14.5 18.45

Released Q1 2022 Q4 2018 –

Mahyar Emami © 2024

Simulation Rate

17

Few did not scale at all
with Verilator

At best scales up to
only 6 cores with
Verilator

jpeg is sequential

Mahyar Emami © 2024

● General-purpose multicores have poor thread scaling in RTL

simulation
○ Synchronization overheads limit scaling to tens of cores

● We propose Manticore: an architecture for scalable parallel RTL

simulation
○ Hundreds of cores

● Key ideas
○ A deterministic machine that allows implementing Static BSP

○ Static BSP replaces runtime synchronization with compile-time synchronization

○ Statically schedule entire machine

Conclusion

18

