cPrL T VLSC

Manticore

Hardware-Accelerated RTL Simulation with
Static Bulk-Synchronous Parallelism

Mahyar Emami, Sahand Kashani, Keisuke Kamahori, Sepehr
Pourghannad, Ritik Raj, and James R. Larus

RTL Simulation

e Register Transfer Level (RTL) simulation is at the heart of functional
verification in accelerator design
e Big problem = RTL simulation is slow
o Simulating 1 second of a design could take a week!
o Increasingly important issue:
m More and more accelerators are being built today
m Chips are becoming larger and larger

Research Question:

Can we leverage the inherent parallelism of RTL to
speed up its simulation to hundreds of cores?

Mahyar Emami © 2024

Background

What is RTL?

Digital circuits are described in
hardware description languages like
Verilog and VHDL at the Register
Transfer Level (RTL) abstraction

® Stateful registers / memories

® Stateless logic in between

Mahyar Emami

Netlist

Register (stateful)

R2

p

}____

R1

p

V

1

L3

R4

Logic (stateless)

-—

p

R3

!

@M}

f

Y

Cycle-accurate simulation

lnext 4! —Currﬁgéister {(stpteful) Netlist
; i Logjic (stateless)
e How to simulate? i ' v !

*@ >R:5 M

- {
o Split registers l =

m current and next value @—’>R1 =@—>>R:3

o Ateach cycle ; i
m Compute next register values

m Overwrite current register values NN =
m Repeat K ; Esj \i\\ DAG

Mahyar Emami © 2024 5

%
»@«

Bulk-synchronous parallel simulation
RTL simulation lends itself well to BSP

Computation phase Communication phase
e Each processor computes its program e Producers send their values to
partition independently consumers
e Synchronize processors e Synchronize processors
’ I . ' '
R1— R2— R3—- R4— R5— P1l L2 i L1 | |L2 Pl ||l I
‘ I !L__—_——”,/ I I I
I N\ P2[13 I [NN
1 | 1 I I
@ @ P3 i | 4 I I
DRI)
. 1| XA .
P4l L5 1 L6 L5 i L6 | I
R1+ R2+ R3+ R4+ - : [15 U
computation | Fomm
" —

cycle X cycle X+1

Mahyar Emami © 2024

Bounding software
simulation speed

Parallel Simulation is Doomed on x86!

e Simulation rate on shared-memory general purpose machines

Host clock speed

f
o W//N+(N—1)B

™~

Simulation Cost of barrier

rate Work per core

Necollapse

dr
d_N Neollapse — O — ncollapse — W/B

See paper for an experimental demonstration!

Mahyar Emami © 2024

Taming Synchronization Cost

Host clock speed

Simulation

rate Work per core Cost of barrier

dr
d_N>O

We don’t really need a barrier if we could
Mahyar Enami © 2024 schedule all operations at compile-time!

Manticore
Architecture

Key idea

e Problem

© Runtime overhead of synchronization
o Limits scaling to tens of cores
e Goal
o Scale simulation to hundreds or thousands of cores

e Solution

©)

©)

©)

Mahyar Emami © 2024

Eliminate runtime synchronization
Statically schedule all cores
Requires a machine with deterministic behavior

"

Manticore architecture: 10,000-foot view

e Static BSP = native message passing
e Lock-step execution (cores + NoC)
o local memories
o predication
e Global stall for non-deterministic
events

o See paper for more

Mahyar Emami © 2024

i

—

Core\

Bh—"

—

Bh—

—

Core
 —

—

<—>h

HHHHHH!

) S—

Cl

12

Static BSP execution with Manticore

See paper for parch details!

core0 corel Lock-step execution
0x00:0R wl z1 z0 0x00:ADD x2 x1 xO0¢.) © Same PC on all cores

OX01:AND w3 wl z2 —LPC | p [Px01:5U8 x3 y1 xz‘\

0x304SEND x1 w3 corell 5(2) [(2)c_]ox08:SEND z2 x2 cored| Message-passing:
Ox31:SEND yl1 wl corell 5|'a i ® Mixed computation and
8 > o | [6x20:SUB y14 x3 cl communication
OxfO:{SEND x5 w4 corel| < «— . e Delayed updates
Oxfl:LLD y12 ml[ol] g 2 Dequeue and update
| s x1,y1, x5 Compile-time arrive-await
Dequeue and update barrier
z2 Compile-time S-LeEp e “NOP” until straggler is

o runtime
synchronization
13

Mahyar Emami © 2024

From RTL to parallel execution

R1— R2— R3—' R4 — R5— Core

g oo 5\6\/ “—> @ig
{ & \\ Oe—>

R1+ R2+ R3+ R4+ R5+

© [

o|m

Core

Core

Manticore’s hardware relies entirely on its
compiler for:

e Parallelizing the netlist

e Scheduling instructions (data hazards)
Mahyar Enani © 2024 e Scheduling messages (message delivery)

14

Evaluation

Hardware setup

Verilator v5.006 (Feb 2023) Manticore

p e il AL
Hardware AMD EPYC 7V73X | Intel Core i7 9700k | Crototyped on Xilinx Alveo

U200
cores 120 (dual socket) | 8 225
Freq. GHz 3.0-3.5 4.6-4.9 (overclocked) 0.475
SRAM (MiB) | 259.6 14.5 18.45

Released Q1 2022 Q4 2018 =

Mahyar Emami © 2024

Simulation Rate

bc
e e =
x 200 x || Few did not scale at all
5 5 5 with Verilator
0
epyc epyc i7 i7 mntcr epyc epyc i7 i7 mntcr
lc 4c lc 3c lc 4c lc 3¢
mc blur
n 400 Fommmmmeeee e —mmmmmmee ~ 400 w1000 oo .
ju g ju pu
4 X X
R i @ 288 g 500 At best scales up to
o o o .
0 - 0 0 only 6 cores with
i7 mntcr epyc epyc i7 mntcr .
6c PR A Verilator
N ~ 200 ~ 4000
< 200 z = . . .
2 100 £ 100 2 2000 jpeg is sequential
-4 [~4 o
0 0 0
epyc epyc i7 i7 mntcr epyc epyc i7 i7 mntcr
lc 5¢c lc 5¢ lc 3c lc 3c

17

Mahyar Emami © 2024

Conclusion

e General-purpose multicores have poor thread scaling in RTL
simulation
o Synchronization overheads limit scaling to tens of cores
e We propose Manticore: an architecture for scalable parallel RTL
simulation
© Hundreds of cores
e Key ideas
o A deterministic machine that allows implementing Static BSP

o Static BSP replaces runtime synchronization with compile-time synchronization
o Statically schedule entire machine

Mahyar Emami © 2024 18

