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RTL Simulation

● Register Transfer Level (RTL) simulation is at the heart of functional 

verification in accelerator design

● Big problem ⇒ RTL simulation is slow

○ Simulating 1 second of a design could take a week!

○ Increasingly important issue:

■ More and more accelerators are being built today

■ Chips are becoming larger and larger
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Research Question:

Can we leverage the inherent parallelism of RTL to
speed up its simulation to hundreds of cores?



Background
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What is RTL?
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Digital circuits are described in 

hardware description languages like 

Verilog and VHDL at the Register 

Transfer Level (RTL) abstraction

● Stateful registers / memories

● Stateless logic in between

Register (stateful)
Logic (stateless)

Netlist
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Cycle-accurate simulation
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Register (stateful)
Logic (stateless)

● How to simulate?
○ Split registers

■ current and next value
○ At each cycle 

■ Compute next register values
■ Overwrite current register values
■ Repeat

currentnext
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Bulk-synchronous parallel simulation
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Computation phase
● Each processor computes its program 

partition independently
● Synchronize processors

Communication phase
● Producers send their values to 

consumers
● Synchronize processors

RTL simulation lends itself well to BSP



Bounding software 
simulation speed 
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Parallel Simulation is Doomed on x86!

● Simulation rate on shared-memory general purpose machines
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Simulation 
rate

Cost of barrier

# cores Host clock speed

Work per core

See paper for an experimental demonstration!
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Taming Synchronization Cost
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Simulation 
rate

Cost of barrier

# cores Host clock speed

Work per core

We don’t really need a barrier if we could 
schedule all operations at compile-time!



Manticore 
Architecture
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Key idea

● Problem
○ Runtime overhead of synchronization

○ Limits scaling to tens of cores

● Goal
○ Scale simulation to hundreds or thousands of cores

● Solution
○ Eliminate runtime synchronization

○ Statically schedule all cores

○ Requires a machine with deterministic behavior
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Manticore architecture: 10,000-foot view
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● Static BSP ⇒ native message passing

● Lock-step execution (cores + NoC) 

○ local memories

○ predication

● Global stall for non-deterministic 

events

○ See paper for more
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Static BSP execution with Manticore
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Lock-step execution
● Same PC on all cores

Message-passing:
● Mixed computation and 

communication
● Delayed updates

Compile-time arrive-await 
barrier
● “NOP” until straggler is 

done
● No runtime 

synchronization

See paper for µarch details!

Compile-time 
barrier
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From RTL to parallel execution
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Compiler

Manticore’s hardware relies entirely on its 
compiler for:
● Parallelizing the netlist
● Scheduling instructions (data hazards)
● Scheduling messages (message delivery)



Evaluation
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Hardware setup
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Verilator v5.006 (Feb 2023) Manticore

Hardware AMD EPYC 7V73X Intel Core i7 9700K
Prototyped on Xilinx Alveo 
U200

# cores 120 (dual socket) 8 225

Freq. GHz 3.0–3.5 4.6–4.9 (overclocked) 0.475

SRAM (MiB) 259.6 14.5 18.45

Released Q1 2022 Q4 2018 –
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Simulation Rate

17

Few did not scale at all 
with Verilator

At best scales up to 
only 6 cores with 
Verilator

jpeg is sequential
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● General-purpose multicores have poor thread scaling in RTL 

simulation
○ Synchronization overheads limit scaling to tens of cores

● We propose Manticore: an architecture for scalable parallel RTL 

simulation
○ Hundreds of cores

● Key ideas
○ A deterministic machine that allows implementing Static BSP

○ Static BSP replaces runtime synchronization with compile-time synchronization

○ Statically schedule entire machine

Conclusion
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