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RTL Simulation

e Register Transfer Level (RTL) simulation is at the heart of functional
verification in accelerator design
e Big problem = RTL simulation is slow
o Simulating 1 second of a design could take a week!
o Increasingly important issue:
m More and more accelerators are being built today
m Chips are becoming larger and larger

Research Question:

Can we leverage the inherent parallelism of RTL to
speed up its simulation to hundreds of cores?

Mahyar Emami © 2024



Background



What is RTL?

Digital circuits are described in
hardware description languages like
Verilog and VHDL at the Register
Transfer Level (RTL) abstraction

® Stateful registers / memories

® Stateless logic in between
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Cycle-accurate simulation

lnext 4! —Currﬁgéister {(stpteful) Netlist
; i Logjic (stateless)
e How to simulate? i ' v !
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Bulk-synchronous parallel simulation
RTL simulation lends itself well to BSP

Computation phase Communication phase
e Each processor computes its program e Producers send their values to
partition independently consumers
e Synchronize processors e Synchronize processors
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Bounding software
simulation speed



Parallel Simulation is Doomed on x86!

e Simulation rate on shared-memory general purpose machines

Host clock speed

f
o W//N+(N—1)B

™~

Simulation Cost of barrier

rate Work per core

Necollapse

dr
d_N Neollapse — O — ncollapse — W/B

See paper for an experimental demonstration!
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Taming Synchronization Cost

Host clock speed

Simulation

rate Work per core Cost of barrier

dr
d_N>O

We don’t really need a barrier if we could
Mahyar Enami © 2024 schedule all operations at compile-time!



Manticore
Architecture



Key idea

e Problem

© Runtime overhead of synchronization
o Limits scaling to tens of cores
e Goal
o Scale simulation to hundreds or thousands of cores

e Solution

©)

©)

©)
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Eliminate runtime synchronization
Statically schedule all cores
Requires a machine with deterministic behavior
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Manticore architecture: 10,000-foot view

e Static BSP = native message passing
e Lock-step execution (cores + NoC)
o local memories
o predication
e Global stall for non-deterministic
events

o See paper for more
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Static BSP execution with Manticore

See paper for parch details!

core0 corel Lock-step execution
0x00:0R wl z1 z0 0x00:ADD x2 x1 xO0¢. ) © Same PC on all cores

OX01:AND w3 wl z2 —LPC | p [Px01:5U8 x3 y1 xz‘\

0x304SEND x1 w3 corell 5(2) [(2)c_]ox08:SEND z2 x2 cored| Message-passing:
Ox31:SEND yl1 wl corell 5|'a i ® Mixed computation and
8 > o | [6x20:SUB y14 x3 cl communication
OxfO:{SEND x5 w4 corel| < «— . e Delayed updates
Oxfl:LLD y12 ml[ol] g 2 Dequeue and update
| s x1,y1, x5 Compile-time arrive-await
Dequeue and update barrier
z2 Compile-time S-LeEp e “NOP” until straggler is

o runtime
synchronization
13
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From RTL to parallel execution
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Core

Core

Manticore’s hardware relies entirely on its
compiler for:

e Parallelizing the netlist

e Scheduling instructions (data hazards)
Mahyar Enani © 2024 e Scheduling messages (message delivery)
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Evaluation



Hardware setup

Verilator v5.006 (Feb 2023) Manticore

p e il AL
Hardware AMD EPYC 7V73X | Intel Core i7 9700k | Crototyped on Xilinx Alveo

U200
# cores 120 (dual socket) | 8 225
Freq. GHz 3.0-3.5 4.6-4.9 (overclocked) 0.475
SRAM (MiB) | 259.6 14.5 18.45

Released Q1 2022 Q4 2018 =
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Simulation Rate
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Conclusion

e General-purpose multicores have poor thread scaling in RTL
simulation
o Synchronization overheads limit scaling to tens of cores
e We propose Manticore: an architecture for scalable parallel RTL
simulation
©  Hundreds of cores
e Key ideas
o A deterministic machine that allows implementing Static BSP

o Static BSP replaces runtime synchronization with compile-time synchronization
o Statically schedule entire machine
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